Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 15(8): 1673-85, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27184846

ABSTRACT

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Subject(s)
Calcium Channels/metabolism , Energy Metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Autophagy , Calcium/metabolism , Calcium Channels/chemistry , Cell Movement , Endothelial Cells/metabolism , Gene Deletion , HEK293 Cells , HeLa Cells , Heart/physiology , Humans , Mice, Knockout , Mitochondrial Proteins/chemistry , Neovascularization, Physiologic , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...