Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 9: 129, 2018.
Article in English | MEDLINE | ID: mdl-29472905

ABSTRACT

The ever increasing multidrug-resistance of clinically important pathogens and the lack of novel antibiotics have resulted in a true antibiotic crisis where many antibiotics are no longer effective. Further complicating the treatment of bacterial infections are antibiotic-tolerant persister cells. Besides being responsible for the recalcitrant nature of chronic infections, persister cells greatly contribute to the observed antibiotic tolerance in biofilms and even facilitate the emergence of antibiotic resistance. Evidently, eradication of these persister cells could greatly improve patient outcomes and targeting persistence may provide an alternative approach in combatting chronic infections. We recently characterized 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009), a novel anti-persister molecule capable of directly killing persisters from both Gram-negative and Gram-positive pathogens. SPI009 potentiates antibiotic activity in several in vitro and in vivo infection models and possesses promising anti-biofilm activity. Strikingly, SPI009 restores antibiotic sensitivity even in resistant strains. In this study, we investigated the mode of action of this novel compound using several parallel approaches. Genetic analyses and a macromolecular synthesis assays suggest that SPI009 acts by causing extensive membrane damage. This hypothesis was confirmed by liposome leakage assay and membrane permeability studies, demonstrating that SPI009 rapidly impairs the bacterial outer and inner membranes. Evaluation of SPI009-resistant mutants, which only could be generated under severe selection pressure, suggested a possible role for the MexCD-OprJ efflux pump. Overall, our results demonstrate the extensive membrane-damaging activity of SPI009 and confirm its clinical potential in the development of novel anti-persister therapies.

2.
Article in English | MEDLINE | ID: mdl-28630188

ABSTRACT

Antibiotics typically fail to completely eradicate a bacterial population, leaving a small fraction of transiently antibiotic-tolerant persister cells intact. Persisters are therefore seen to be a major cause of treatment failure and greatly contribute to the recalcitrant nature of chronic infections. The current study focused on Pseudomonas aeruginosa, a Gram-negative pathogen belonging to the notorious ESKAPE group of pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and, due to increasing resistance against most conventional antibiotics, posing a serious threat to human health. Greatly contributing to the difficult treatment of P. aeruginosa infections is the presence of persister cells, and elimination of these cells would therefore significantly improve patient outcomes. In this study, a small-molecule library was screened for compounds that, in combination with the fluoroquinolone antibiotic ofloxacin, reduced the number of P. aeruginosa persisters compared to the number achieved with treatment with the antibiotic alone. Based on the early structure-activity relationship, 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009) was selected for further characterization. Combination of SPI009 with mechanistically distinct classes of antibiotics reduced the number of persisters up to 106-fold in both lab strains and clinical isolates of P. aeruginosa Further characterization of the compound revealed a direct and efficient killing of persister cells. SPI009 caused no erythrocyte damage and demonstrated minor cytotoxicity. In conclusion, we identified a novel antipersister compound active against P. aeruginosa with promising applications for the design of novel, case-specific combination therapies in the fight against chronic infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Cell Line , Gram-Negative Bacteria/drug effects , HEK293 Cells , Humans , Microbial Sensitivity Tests/methods , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Structure-Activity Relationship
3.
Front Microbiol ; 8: 2585, 2017.
Article in English | MEDLINE | ID: mdl-29312259

ABSTRACT

We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections.

4.
Bioorg Med Chem Lett ; 24(23): 5404-8, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25453797

ABSTRACT

Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 µg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Carbazoles/chemistry , Pseudomonas aeruginosa/isolation & purification , Biofilms , Carbazoles/analysis , Humans , Microbial Sensitivity Tests
5.
Mol Ther Nucleic Acids ; 3: e145, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24496437

ABSTRACT

TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

6.
Bioorg Med Chem ; 21(22): 7107-17, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24095010

ABSTRACT

Under hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression. In this study, we have developed and implemented a stepwise in vitro screening procedure on human cancer cells to identify new potent MCT inhibitors. Various 7-substituted carboxycoumarins and quinolinone derivatives were synthesized and pharmacologically evaluated. Most active compounds were obtained using a palladium-catalyzed Buchwald-Hartwig type coupling reaction, which proved to be a quick and efficient method to obtain aminocarboxycoumarin derivatives. Inhibition of lactate flux revealed that the most active compound 19 (IC50 11 nM) was three log orders more active than the CHC reference compound. Comparison with warfarin, a conventional anticoagulant coumarin, further showed that compound 19 did not influence the prothrombin time which, together with a good in vitro ADME profile, supports the potential of this new family of compounds to act as anticancer drugs through inhibition of lactate flux.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Coumarins/chemical synthesis , Coumarins/pharmacology , Lactates/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Half-Life , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Quinolones/chemistry
7.
Mol Ther ; 20(9): 1737-49, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22735378

ABSTRACT

The hepatitis C virus (HCV) chronically infects 2% of the world population and effective treatment is limited by long duration and significant side-effects. Here, we describe a novel drug, intended as a "single-shot " therapy, which expresses three short hairpin RNAs (shRNAs) that simultaneously target multiple conserved regions of the HCV genome as confirmed in vitro by knockdown of an HCV replicon system. Using a recombinant adeno-associated virus (AAV) serotype 8 vector for delivery, comprehensive transduction of hepatocytes was achieved in vivo in a nonhuman primate (NHP) model following a single intravenous injection. However, dose ranging studies performed in 13 NHP resulted in high-expression levels of shRNA from wild-type (wt) Pol III promoters and dose-dependent hepatocellular toxicity, the first demonstration of shRNA-related toxicity in primates, establishing that the hepatotoxicity arises from highly conserved features of the RNA interference (RNAi) pathway. In the second generation drug, each promoter was re-engineered to reduce shRNA transcription to levels that circumvent toxicity but still inhibit replicon activity. In vivo testing of this modified construct in 18 NHPs showed conservation of hepatocyte transduction but complete elimination of hepatotoxicity, even with sustained shRNA expression for 50 days. These data support progression to a clinical study for treatment of HCV infection.


Subject(s)
Genome, Viral , Hepacivirus/genetics , Hepatitis C, Chronic/therapy , Hepatocytes/virology , Liver/virology , RNA, Small Interfering/genetics , RNA, Viral/antagonists & inhibitors , Animals , DNA Polymerase III/genetics , Dependovirus/genetics , Genetic Engineering , Genetic Therapy , Genetic Vectors , Hepatitis C, Chronic/virology , Hepatocytes/pathology , Injections, Intravenous , Liver/pathology , Macaca fascicularis , Mice , Promoter Regions, Genetic , RNA, Viral/genetics , Replicon , Transduction, Genetic , Virus Replication
8.
Antimicrob Agents Chemother ; 56(3): 1364-75, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22203606

ABSTRACT

PF-05095808 is a novel biological agent for chronic hepatitis C virus (HCV) therapy. It comprises a recombinant adeno-associated virus (AAV) DNA vector packaged into an AAV serotype 8 capsid. The vector directs expression of three short hairpin RNAs (shRNAs) targeted to conserved regions of the HCV genome. These shRNAs are processed by the host cell into the small interfering RNAs which mediate sequence-specific cleavage of target regions. For small-molecule inhibitors the key screens needed to assess in vitro activity are well defined; we developed new assays to assess this RNA interference agent and so to understand its therapeutic potential. Following administration of PF-05095808 or corresponding synthetic shRNAs, sequence-specific antiviral activity was observed in HCV replicon and infectious virus systems. To quantify the numbers of shRNA molecules required for antiviral activity in vitro and potentially also in vivo, a universal quantitative PCR (qPCR) assay was developed. The number of shRNA molecules needed to drive antiviral activity proved to be independent of the vector delivery system used for PF-05095808 administration. The emergence of resistant variants at the target site of one shRNA was characterized. A novel RNA cleavage assay was developed to confirm the spectrum of activity of PF-05095808 against common HCV clinical isolates. In summary, our data both support antiviral activity consistent with an RNA interference mechanism and demonstrate the potential of PF-05095808 as a therapeutic agent for chronic HCV infection.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Hepacivirus/genetics , Hepatitis C, Chronic/therapy , Base Sequence , Biological Assay , Capsid , Cell Line, Tumor , Drug Resistance, Viral/genetics , Genes, Reporter , Genetic Vectors , Genome, Viral , Hepacivirus/isolation & purification , Hepatitis C, Chronic/virology , Humans , Luciferases , Molecular Sequence Data , Polymerase Chain Reaction , RNA Cleavage , RNA Interference , RNA, Small Interfering/genetics , Replicon/genetics , Virus Replication/drug effects
9.
Antimicrob Agents Chemother ; 55(7): 3105-14, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21502629

ABSTRACT

We have screened 47 locked nucleic acid (LNA) antisense oligonucleotides (ASOs) targeting conserved (>95% homology) sequences in the hepatitis C virus (HCV) genome using the subgenomic HCV replicon assay and generated both antiviral (50% effective concentration [EC(50)]) and cytotoxic (50% cytotoxic concentration [CC(50)]) dose-response curves to allow measurement of the selectivity index (SI). This comprehensive approach has identified an LNA ASO with potent antiviral activity (EC(50) = 4 nM) and low cytotoxicity (CC(50) >880 nM) targeting the 25- to 40-nucleotide region (nt) of the HCV internal ribosome entry site (IRES) containing the distal and proximal miR-122 binding sites. LNA ASOs targeting previously known accessible regions of the IRES, namely, loop III and the initiation codon in loop IV, had poor SI values. We optimized the LNA ASO sequence by performing a 1-nucleotide walk through the 25- to 40-nt region and show that the boundaries for antiviral efficacy are extremely precise. Furthermore, we have optimized the format for the LNA ASO using different gapmer and mixomer patterns and show that RNase H is required for antiviral activity. We demonstrate that RNase H-refractory ASOs targeting the 25- to 40-nt region have no antiviral effect, revealing important regulatory features of the 25- to 40-nt region and suggesting that RNase H-refractory LNA ASOs can act as potential surrogates for proviral functions of miR-122. We confirm the antisense mechanism of action using mismatched LNA ASOs. Finally, we have performed pharmacokinetic experiments to demonstrate that the LNA ASOs have a very long half-life (>5 days) and attain hepatic maximum concentrations >100 times the concentration required for in vitro antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Hepacivirus/drug effects , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/pharmacokinetics , Ribosomes/virology , Animals , Cell Line , Humans , Kidney/metabolism , Liver/metabolism , Mice
10.
J Biomol Screen ; 9(6): 516-24, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15452338

ABSTRACT

This article describes the automation of an in vitro cell-based fusion assay for the identification of novel inhibitors of receptor mediated HIV-1 entry. The assay utilises two stable cell lines: one expressing CD4, CCR5 and an LTR-promoter/beta-galactosidase reporter construct, and the other expressing gp160 and tat. Accumulation of beta-galactosidase can only occur following fusion of these two cell lines via the gp160 and receptor mediators, as this event facilitates the transfer of the tat transcription factor between the two cell types. Although similar cell fusion systems have been described previously, they have not met the requirements for HTS due to complexity, throughput and reagent cost. The assay described in this article provides significant advantage, as (a) no transfection/infection events are required prior to the assay, reducing the potential for variability, (b) cells are mixed in solution, enhancing fusion efficiency compared to adherent cells, (c) miniaturization to low volume enables screening in 384-well plates; and (d) online cell dispensing facilitates automated screening. This assay has been employed to screen approximately 650,000 compounds in a singleton format. The data demonstrate that the assay is robust, with a Z' consistently above 0.6, which compares favourably with less complex biochemical assays.


Subject(s)
Biological Assay/methods , CD4 Antigens/metabolism , Cell Fusion , HIV Fusion Inhibitors/analysis , HIV-1/metabolism , Receptors, CCR5/metabolism , Robotics/methods , Animals , Binding Sites , CCR5 Receptor Antagonists , CHO Cells , Cell Line , Cricetinae , Cricetulus , Gene Products, tat/metabolism , HIV Envelope Protein gp160/metabolism , HIV Fusion Inhibitors/pharmacology , HeLa Cells , Humans , Peptide Fragments/metabolism , Robotics/instrumentation , Time Factors , Transfection , beta-Galactosidase/metabolism , tat Gene Products, Human Immunodeficiency Virus
SELECTION OF CITATIONS
SEARCH DETAIL
...