Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 327(9): 562-569, 2017 11.
Article in English | MEDLINE | ID: mdl-29368815

ABSTRACT

Conditions experienced early in life have profound impact on adult fitness, and telomere erosion could be a key mechanism in this process. In particular, early exposure to parasites is a frequent phenomenon in young vertebrates, which is associated with several short- and long-term costs such as telomere erosion. However, the timing of exposure to parasites during ontogeny and maternal antibodies can strongly modulate the costs of immunity, and could differentially affect telomere erosion. Here, we compared the effects of an early or late immune challenge on telomere erosion rate in male and female young feral pigeons (Columba livia) having received or not maternal antibodies. More specifically, we tested whether (i) early or late injections of antigens had different effects on nestling telomere erosion rate, (ii) whether this effect was different between male and female nestlings, and (iii) whether maternal antibodies could modulate telomere erosion rate. Our results show an interaction between sex and age at injection. Late-injected nestlings (injected at 14 days of age) had an accelerated erosion rate compared with the early-injected nestlings (injected at 3 days of age), and this effect was higher in females compared with the males. However, we did not find any effect of maternal antibodies on telomere erosion rate. These results suggest that the age at which an immune challenge occurs is important for telomere erosion and that sex-specific approaches are needed to better understand the short-term and long-term costs of parasite exposure in young vertebrates.


Subject(s)
Columbidae/immunology , Immunity, Maternally-Acquired/immunology , Telomere Shortening/immunology , Age Factors , Animals , Antibodies/immunology , Columbidae/physiology , Female , Immune System , Male , Sex Factors
2.
BMC Res Notes ; 6: 310, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23915680

ABSTRACT

BACKGROUND: Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons. FINDINGS: We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene. CONCLUSIONS: Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons.


Subject(s)
Color , Columbidae/physiology , Receptor, Melanocortin, Type 1/genetics , Animals , Columbidae/genetics , DNA Primers , Polymerase Chain Reaction
3.
Environ Pollut ; 168: 23-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22584112

ABSTRACT

Despite restrictions in emissions, heavy metals may remain a major environmental issue due to their numerous sources and their persistence. Here, we assessed current levels of 4 metals (Copper, Cadmium, Lead, Zinc) in the feathers of 91 feral pigeons (Columba livia) from 7 sites in the urbanized region of Paris. Elements were detected in all pigeons, indicating that metals persist in urbanized areas. The ratio between metal concentrations in the feathers vs. in the environment calculated using data from other studies was 2-90 times higher for cadmium than for other metals, underlying its ecological importance. Concentrations in the feathers depended on locality, suggesting that pigeons remain in local habitats at this restricted scale, as expected from previous observations. Overall, our study suggests that urban feral pigeons may represent a good model system for metal biomonitoring.


Subject(s)
Columbidae , Environmental Pollutants/analysis , Feathers/chemistry , Metals, Heavy/analysis , Animals , Ecosystem , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Paris
4.
Horm Behav ; 53(4): 557-66, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18313056

ABSTRACT

Fledging is a critical period in the life of a bird, notably because at this stage under-development and lack of experience in searching for food may impair survival. The behavioral changes that accompany nest departure are therefore expected to be finely tuned to body condition and growth by endocrine processes. This study examines the possible involvement of corticosterone (CORT) in the stimulation of fledging in White storks through measurement of the changes in its plasma levels in relation to growth, nutritional status and the hatching rank of nestlings. For the first time in nest-bound chicks, we show that fledging is preceded by a marked and progressive 4 fold increase in baseline plasma CORT levels concomitant with an increase in locomotor activity (wing flapping) at the nest. Data on changes in body size, body mass, plasma metabolites and feeding frequency support the view that the increase in plasma CORT was induced by food restriction rather than being endogenously programmed. The timing and intensity of plasma CORT increase was dependent on the hatching rank within a brood, this increase being blunted in the less developed chicks possibly to avoid the impairment of final wing growth. These results show that an increase in plasma CORT as a result of food restriction and through the stimulation of locomotor activity is involved in the control of fledging in White storks. Moreover the CORT increase is adjusted to the hatching rank-related growth status of nestlings.


Subject(s)
Birds/growth & development , Corticosterone/blood , Food Deprivation/physiology , Life Cycle Stages/physiology , Nutritional Status/physiology , Adaptation, Physiological , Animals , Birds/metabolism , Birth Order , Body Constitution/physiology , Flight, Animal/physiology , Linear Models
5.
Gen Comp Endocrinol ; 155(3): 804-13, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18155218

ABSTRACT

This study examines the possibility that metabolic or endocrinal factors initiate fledging in the king penguin, a semi-altricial seabird species breeding a single chick on the ground. Chick fledging (departure to sea) occurred 5d after completion of the molt. It was preceded by a 16d fasting period and by a 7-fold increase in locomotor activity. From the measurement of the plasma concentration of metabolites and of glucagon and insulin, pre-fledging king penguin chicks were found to adapt to fasting in a classical way, i.e. by sparing body protein and mobilizing fat stores. At fledging, chicks were in phase II of fasting and their departure to sea was not stimulated by reaching critical energy depletion (phase III), in contrast to that which has been reported in breeding-fasting adults. The plasma level of corticosterone remained unchanged throughout the whole pre-fledging period, providing no support for a role of this stress-hormone in the facilitation of fledging. Thus, king penguin fledglings did not appear to be environmentally or nutritionally stressed. The plasma levels of thyroid hormones were elevated during the pre-fledging molt, in accordance with their key role in molt control in adult penguins. These levels declined by the time of the molt end, the plasma level of T4 thereafter being directly related to the time left before fledging. These results do not support the view that chronically elevated levels of thyroid hormones are required for the energy-demanding transition between being ashore and in cold water, but they suggest that the maintenance of high T4 levels may delay fledging.


Subject(s)
Behavior, Animal/physiology , Endocrine System/physiology , Molting/physiology , Spheniscidae/metabolism , Spheniscidae/physiology , 3-Hydroxybutyric Acid/blood , Age Factors , Animals , Blood Glucose/metabolism , Body Weight/physiology , Corticosterone/blood , Fatty Acids, Nonesterified/blood , Feeding Behavior/physiology , Glucagon/blood , Insulin/blood , Motor Activity/physiology , Posture/physiology , Sleep/physiology , Spheniscidae/blood , Spheniscidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...