Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; : e16370, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989916

ABSTRACT

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.

2.
Ann Bot ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804968

ABSTRACT

BACKGROUND AND AIMS: Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species. METHODS: Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK. KEY RESULTS: We present the first complete plastid genomes (plastomes) of Wullschlaegelia, the sole genus of the tribe Wullschlaegelieae, revealing a highly reduced genome of 37 kilobases, which retains a fraction of the genes present in related autotrophs. Plastid phylogenomic analyses recovered a strongly supported clade composed exclusively of mycoheterotrophic species with long branches. We further analyzed mitochondrial gene sets, which recovered similar relationships to those in other studies using nuclear data, but the placement of Wullschlaegelia remains uncertain. We conducted comparative plastome analyses among Wullschlaegelia and other heterotrophic orchids, revealing a suite of correlated substitutional and structural changes relative to autotrophic species. Lastly, we investigated evolutionary and structural variation in matK, which is retained in Wullschlaegelia and a few other 'late stage' heterotrophs and found evidence for structural conservation despite rapid substitution rates in both Wullschlaegelia and the leafless Gastrodia. CONCLUSIONS: Our analyses reveal the limits of what the plastid genome can tell us on orchid relationships in this part of the tree, even when applying parameter-rich heterotachy models. Our study underscores the need for increased taxon sampling across all three genomes at the epidendroid base, and illustrates the need for further research on addressing heterotachy in phylogenomic analyses.

3.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909462

ABSTRACT

Invasive plant species cause massive ecosystem damage globally, yet represent powerful case studies in population genetics and rapid adaptation to new habitats. The availability of digitized herbarium collections data, and the ubiquity of invasive species across the landscape make them highly accessible for studies of invasion history and population dynamics associated with their introduction, establishment, spread, and ecological interactions. Here we focus on Lonicera japonica, one of the most damaging invasive vine species in North America. We leveraged digitized collections data and contemporary field collections to reconstruct the invasion history and characterize patterns of genomic variation in the eastern USA, using a straightforward method for generating nucleotide polymorphism data and a recently published, chromosome-level genome for the species. We found an overall lack of population structure among sites in northern West Virginia, USA, as well as across sites in the central and eastern USA. Heterozygosity and population differentiation were both low based on Fst, analysis of molecular variance, principal components analysis, and cluster-based analyses. We also found evidence of high inbreeding coefficients and significant linkage disequilibrium, in line with the ability of this otherwise outcrossing, perennial species to propagate vegetatively. Our findings corroborate earlier studies based on allozyme data, and suggest that intentional, human-assisted spread explains the lack of population structure, as this species was planted for erosion control and as an ornamental, escaping cultivation repeatedly across the USA. Finally, we discuss how plant invasion genomics can be incorporated into experiential undergraduate education as a way to integrate teaching and research.

4.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798355

ABSTRACT

Premise of the Research: Plants remain underrepresented among species with sequenced mitochondrial genomes (mitogenomes), due to the difficulty in assembly with short-read technology. Invasive species lag behind crops and other economically important species in this respect, representing a lack of tools for management and land conservation efforts. Methodology: The mitogenome of Microstegium vimineum, one of the most damaging invasive plant species in North America, was sequenced and analyzed using long-read data, providing a resource for biologists and managers. We conducted analyses of genome content, phylogenomic analyses among grasses and relatives based on mitochondrial coding regions, and an analysis of mitochondrial single nucleotide polymorphism in this invasive grass species. Pivotal Results: The assembly is 478,010 bp in length and characterized by two large, inverted repeats, and a large, direct repeat. However, the genome could not be circularized, arguing against a "master circle" structure. Long-read assemblies with data subsets revealed several alternative genomic conformations, predominantly associated with large repeats. Plastid-like sequences comprise 2.4% of the genome, with further evidence of Class I and Class II transposable element-like sequences. Phylogenetic analysis placed M. vimineum with other Microstegium species, excluding M. nudum, but with weak support. Analysis of polymorphic sites across 112 accessions of M. vimineum from the native and invasive ranges revealed a complex invasion history. Conclusions: We present an in-depth analysis of mitogenome structure, content, phylogenetic relationships, and range-wide genomic variation in M. vimineum's invasive US range. The mitogenome of M. vimineum is typical of other andropogonoid grasses, yet mitochondrial sequence variation across the invasive and native ranges is extensive. Our findings suggest multiple introductions to the US over the last century, with subsequent spread, secondary contact, long-distance dispersal, and possibly post-invasion selection on awn phenotypes. Efforts to produce genomic resources for invasive species, including sequenced mitochondrial genomes, will continue to provide tools for their effective management, and to help predict and prevent future invasions.

5.
Am J Bot ; 109(5): 689-705, 2022 05.
Article in English | MEDLINE | ID: mdl-35435240

ABSTRACT

PREMISE: Digitized collections can help illuminate the mechanisms behind the establishment and spread of invasive plants. These databases provide a record of traits in space and time that allows for investigation of abiotic and biotic factors that influence invasive species. METHODS: Over 1100 digitized herbarium records were examined to investigate the invasion history and trait variation of Microstegium vimineum. Presence-absence of awns was investigated to quantify geographic patterns of this polymorphic trait, which serves several functions in grasses, including diaspore burial and dispersal to germination sites. Floret traits were further quantified, and genomic analyses of contemporary samples were conducted to investigate the history of M. vimineum's introduction and spread into North America. RESULTS: Herbarium records revealed similar patterns of awn polymorphism in native and invaded ranges of M. vimineum, with awned forms predominating at higher latitudes and awnless forms at lower latitudes. Herbarium records and genomic data suggested initial introduction and spread of the awnless form in the southeastern United States, followed by a putative secondary invasion and spread of the awned form from eastern Pennsylvania. Awned forms have longer florets, and floret size varies significantly with latitude. There is evidence of a transition zone with short-awned specimens at mid-latitudes. Genomic analyses revealed two distinct clusters corresponding to awnless and awned forms, with evidence of admixture. CONCLUSIONS: Our results demonstrate the power of herbarium data to elucidate the invasion history of a problematic weed in North America and, together with genomic data, reveal a possible key trait in introduction success: presence or absence of an awn.


Subject(s)
Plant Structures , Poaceae , Germination , Introduced Species , Phenotype , Poaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...