Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Omega ; 7(13): 10864-10876, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415374

ABSTRACT

Diffusive gradients in thin films (DGTs) have been established as useful tools for the determination of nitrate, phosphate, trace metals, and organic concentrations. General use of DGTs, however, is limited by the subsequent requirement for laboratory analysis. To increase the uptake of DGT as a tool for routine monitoring by nonspecialists, not researchers alone, methods for in-field analysis are required. Incorporation of color reagents into the binding layer, or as the binding layer, could enable the easy and accurate determination of analyte concentrations in-field. Here, we sought to develop a chitosan-stabilized silver nanoparticle (AuNP) suspension liquid-binding layer which developed color on exposure to nitrite, combined with an Fe(0)-impregnated poly-2-acrylamido-2-methyl-1-propanesulfonic acid/acrylamide copolymer hydrogel [Fe(0)-p(AMPS/AMA)] for the reduction of nitrate. The AuNP-chitosan suspension was housed in a 3D designed and printed DGT base, with a volume of 2 mL, for use with the standard DGT solution probe caps. A dialysis membrane with a molecular weight cutoff of <15 kDa was used, as part of the material diffusion layer, to ensure that the AuNP-chitosan did not diffuse through to the bulk solution. This synthesized AuNP-chitosan provided quantitative nitrite concentrations (0 to 1000 mg L-1) and masses (145 µg) in laboratory-based color development studies. An Fe(III)-impregnated poly-2-acrylamido-2-methyl-1-propanesulfonic acid/acrylamide copolymer hydrogel [Fe(III)-p(AMPS/AMA)] was developed (10% AMPS, and 90% AMA), which was treated with NaBH4 to form an Fe(0)-p(AMPS/AMA) hydrogel. The Fe(0)-p(AMPS/AMA) hydrogel quantitatively reduced nitrate to nitrite. The total nitrite mass produced was ∼110 µg, from nitrate. The diffusional characteristics of nitrite and nitrate through the Fe(III)-p(AMPS/AMA) and dialysis membrane were 1.40 × 10-5 and 1.40 × 10-5 and 5.05 × 10-6 and 5.15 × 10-6 cm2 s-1 at 25 °C respectively. The Fe(0)-hydrogel and AuNP-chitosan suspension operated successfully in laboratory tests individually; however, the combined AuNP-chitosan suspension and Fe(0)-hydrogel DGT did not provide quantitative nitrate concentrations. Further research is required to improve the reaction rate of the AuNP-chitosan nitrite-binding layer, to meet the requirement of rapid binding to operate as a DGT.

2.
Sci Total Environ ; 788: 147737, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34020089

ABSTRACT

Diffusive Gradients in Thin-Films (DGT) have traditionally been used to measure time-weighted average concentration in water. We tested whether Br--DGT in combination with the trace-dilution flow rate method, could be used as a new approach for measuring water flow rate. A novel bromide selective DGT based on the Purolite Bromide Plus anion exchange resin (Br--DGT) was developed, which provided environmental bromide concentrations comparable to grab samples. The Br--DGT provided quantitative bromide concentrations at a range of pH, competing ion concentrations, and in synthetic natural solution. The uptake efficiency was 95.7 ± 3.4%, and the elution efficiency was 95.5 ± 4.7%. The absorption maximum/saturation point of each binding disk was 0.684 ± 0.001 mg. Bromide adsorption to the binding layer was linear to 44.1% of the total binding capacity, 0.302 mg. The determined diffusion coefficient through the agarose cross-linked polyacrylamide (APA) hydrogels was 1.05 × 10-5 cm2 s-1 at 17.9 °C, temperature corrected to 25 °C was 1.29 × 10-5 cm2 s-1. DGT flow rates were between -14.7 and 6.50% of the flow independently monitored flow rate (weir). In comparison, grab sample flow rates diverged by 5.52 to 58.9% from the weir flow rate.

3.
Sci Total Environ ; 718: 135267, 2020 May 20.
Article in English | MEDLINE | ID: mdl-31859060

ABSTRACT

The increase in environmental nutrient availability as a result of human activities has necessitated the development of mitigation strategies for nutrient removal, such as nitrate. Current methods for determining the efficiency of different mitigation strategies required measurement of changes in nitrate concentrations, however, these methods can be expensive or do not account fully for the temporal variability of nitrate concentration. This study evaluated the utility of Diffusive Gradients in Thins-Films (DGT) for determining nitrate removal in two denitrifying bioreactors, and compared DGT performance to traditional approaches for determining performance, including high and low frequency water grab sampling. The binding layer was produced using the Purolite® A520E anion exchange resin. The uptake and elution efficiencies were 98.8% and 93.4% respectively. DGTs of three material diffusion layer thicknesses were placed in piezometers along longitudinal transects, to enable calculation of the diffusive boundary layer and provide replicates. These were removed after 16, 24 and 36 h, and the accumulated nitrate masses were extracted and quantified to calculate nitrate concentration. Concentrations were subsequently utilised to calculate nitrate removal rates in both bioreactors. Grab samples were taken at 30 and 60 min intervals over those periods, nitrate concentrations were also measured to determine nitrate removal. DGTs provided nitrate removal rates at bioreactor site one (controlled flow, wastewater treatment) of 14.83-30.75 g N m-3 d-1, and 1.22-3.63 g N m-3 d-1 at site two (variable flow, agricultural run-off). DGT determined nitrate concentrations and removal rates were in strong accordance with high frequency grab sampling, but data collection via DGTs was considerably easier. Utilising DGTs for the measurement of bioreactor performance overcame many of the challenges associated with high frequency grab sampling, and other methods, such as accounting for temporal variation in nitrate concentration and reduced analytical requirements.


Subject(s)
Bioreactors , Diffusion , Environmental Monitoring , Nitrates , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...