Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Endovasc Ther ; 17(1): 95-107, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20199275

ABSTRACT

PURPOSE: To develop an improved methodology for investigating the parameters influencing stent-graft migration, with particular focus on the limitations of existing methods. METHODS: A physiological silicone rubber abdominal aortic aneurysm (AAA) model for fixation studies was manufactured based on an idealized AAA geometry: the model had a 24-mm neck, a 50-mm aneurysm, 12-mm-diameter legs, a 60 degrees bifurcation angle, and 2-mm-thick walls. The models were authenticated in neck fixation experiments. The displacement force required to migrate stent-grafts in physiological pulsatile flow was tested dynamically in water at 37 degrees C. A commercially available longitudinally rigid stent-graft (AneuRx) and a homemade device with little longitudinal rigidity were studied in a number of different configurations to investigate the effect of neck fixation length and systolic pressure on displacement force. RESULTS: The AneuRx (6.95+/-0.49 to 8.52+/-0.5 N) performed significantly better than the homemade device (2.57+/-0.11 to 4.62+/-0.25 N) in pulsatile flow. The opposite was true in the neck fixation tests because the longitudinal stiffness of the AneuRx was not accounted for. Increasing pressure or decreasing fixation length compromised the fixation of the homemade device. This relationship was not as clear for the AneuRx because decreasing proximal fixation resulted in an increase in iliac fixation, which could assist fixation in this device. CONCLUSION: Assessing the migration resistance of stent-grafts based solely on proximal fixation discriminates against devices that are longitudinally stiff. Current in vivo models may give inaccurate displacement forces due to the high degree of oversizing in these studies. A novel in vitro approach, accounting for longitudinal rigidity and realistic graft oversizing, was developed to determine the resistance of aortic stent-grafts to migration in the period immediately after device implantation.


Subject(s)
Aorta, Abdominal/surgery , Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Foreign-Body Migration/prevention & control , Stents , Aorta, Abdominal/pathology , Aorta, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/physiopathology , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/methods , Equipment Failure Analysis , Foreign-Body Migration/etiology , Humans , Materials Testing , Models, Anatomic , Prosthesis Failure , Pulsatile Flow , Stress, Mechanical
2.
J Endovasc Ther ; 16(3): 322-35, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19642790

ABSTRACT

PURPOSE: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. METHODS: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. RESULTS: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. CONCLUSION: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study.


Subject(s)
Aneurysm, Ruptured/etiology , Aneurysm, Ruptured/pathology , Aortic Aneurysm, Abdominal/complications , Aortic Aneurysm, Abdominal/pathology , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Finite Element Analysis , Humans , Reproducibility of Results , Silicones , Stress, Mechanical , Tensile Strength
3.
Med Eng Phys ; 31(8): 1002-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19595622

ABSTRACT

A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2 to 4 MPa, and increasing tear strengths from approximately 0.45 to 0.7 N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques.


Subject(s)
Aortic Aneurysm , Models, Anatomic , Silicone Elastomers , Biomimetics , Calibration , Color , Tensile Strength
4.
J Endovasc Ther ; 15(4): 468-84, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18729555

ABSTRACT

Endovascular repair of abdominal aortic aneurysms has generated widespread interest since the procedure was first introduced two decades ago. It is frequently performed in patients who suffer from substantial comorbidities that may render them unsuitable for traditional open surgical repair. Although this minimally invasive technique substantially reduces operative risk, recovery time, and anesthesia usage in these patients, the endovascular method has been prone to a number of failure mechanisms not encountered with the open surgical method. Based on long-term results of second- and third-generation devices that are currently becoming available, this study sought to identify the most serious failure mechanisms, which may have a starting point in the morphological changes in the aneurysm and stent-graft. To investigate the "behavior" of the aneurysm after stent-graft repair, i.e., how its length, angulation, and diameter change, we utilized state-of-the-art ex vivo methods, which researchers worldwide are now using to recreate these failure modes.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/therapy , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/methods , Blood Vessel Prosthesis , Stents , Biomechanical Phenomena , Blood Vessel Prosthesis/adverse effects , Humans , Stents/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...