Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 9(9): e1003752, 2013.
Article in English | MEDLINE | ID: mdl-24039599

ABSTRACT

Genomic imprinting is a process that causes genes to be expressed from one allele only according to parental origin, the other allele being silent. Diseases can arise when the normally active alleles are not expressed. In this context, low level of expression of the normally silent alleles has been considered as genetic noise although such expression has never been further studied. Prader-Willi Syndrome (PWS) is a neurodevelopmental disease involving imprinted genes, including NDN, which are only expressed from the paternally inherited allele, with the maternally inherited allele silent. We present the first in-depth study of the low expression of a normally silent imprinted allele, in pathological context. Using a variety of qualitative and quantitative approaches and comparing wild-type, heterozygous and homozygous mice deleted for Ndn, we show that, in absence of the paternal Ndn allele, the maternal Ndn allele is expressed at an extremely low level with a high degree of non-genetic heterogeneity. The level of this expression is sex-dependent and shows transgenerational epigenetic inheritance. In about 50% of mutant mice, this expression reduces birth lethality and severity of the breathing deficiency, correlated with a reduction in the loss of serotonergic neurons. In wild-type brains, the maternal Ndn allele is never expressed. However, using several mouse models, we reveal a competition between non-imprinted Ndn promoters which results in monoallelic (paternal or maternal) Ndn expression, suggesting that Ndn allelic exclusion occurs in the absence of imprinting regulation. Importantly, specific expression of the maternal NDN allele is also detected in post-mortem brain samples of PWS individuals. Our data reveal an unexpected epigenetic flexibility of PWS imprinted genes that could be exploited to reactivate the functional but dormant maternal alleles in PWS. Overall our results reveal high non-genetic heterogeneity between genetically identical individuals that might underlie the variability of the phenotype.


Subject(s)
Epigenesis, Genetic/genetics , Genomic Imprinting , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Prader-Willi Syndrome/genetics , Alleles , Animals , Apnea/genetics , Apnea/pathology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Gene Expression Regulation , Heterozygote , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Prader-Willi Syndrome/pathology , Promoter Regions, Genetic
2.
Front Cell Neurosci ; 5: 23, 2011.
Article in English | MEDLINE | ID: mdl-22065950

ABSTRACT

The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for protein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi of wild-type (Kcc2(+/+)) and Kcc2 deficient (Kcc2(-/-)) mouse embryos, we unexpectedly found increased spontaneous neuronal network activity at E18.5, a developmental stage when KCC2 is thought not to be functional in the hippocampus. Embryonic Kcc2(-/-) hippocampi have also an augmented synapse density and a higher frequency of spontaneous glutamatergic and GABA-ergic postsynaptic currents than naïve age matched neurons. However, intracellular chloride concentration ([Cl(-)](i)) and the reversal potential of GABA-mediated currents (E(GABA)) were similar in embryonic Kcc2(+/+) and Kcc2(-/-) CA3 neurons. In addition, KCC2 immunolabeling was cytoplasmic in the majority of neurons suggesting that the molecule is not functional as a plasma membrane chloride co-transporter. Collectively, our results show that already at an embryonic stage, KCC2 controls the formation of synapses and, when deleted, the hippocampus has a higher density of GABA-ergic and glutamatergic synapses and generates spontaneous and evoked epileptiform activities. These results may be explained either by a small population of orchestrating neurons in which KCC2 operates early as a chloride exporter or by transporter independent actions of KCC2 that are instrumental in synapse formation and networks construction.

3.
J Physiol ; 589(Pt 10): 2475-96, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21486764

ABSTRACT

KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.


Subject(s)
Chlorides/metabolism , Hippocampus/metabolism , Symporters/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Down-Regulation , Lipids/adverse effects , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Symporters/genetics , gamma-Aminobutyric Acid/metabolism , K Cl- Cotransporters
4.
J Cell Sci ; 115(Pt 23): 4457-67, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12414992

ABSTRACT

In this work, we showed that in Caco-2 cells, a polarized cell line derived from human colon cancer that does not express caveolin 1 (Cav-1), there was no detectable expression of caveolin 2 (Cav-2). When Cav-2 was reintroduced in these cells, it accumulated in the Golgi complex. A chimera, in which the scaffolding domain of Cav-1 was replaced by the one from Cav-2, induced a prominent Golgi staining of Cav-1, strongly indicating that this domain was responsible for the accumulation of Cav-2 in the Golgi complex. Cav-2 was able to interact with Cav-1 in the Golgi complex but this interaction was not sufficient to export it from this compartment. Several chimeras between Cav-1 and 2 were used to show that surface expression of caveolin was necessary but not sufficient to promote caveolae formation. Interestingly, levels of incorporation of the chimeras into Triton insoluble rafts correlated with their ability to trigger caveolae formation raising the possibility that a critical concentration of caveolins to discrete domains of the plasma membrane might be necessary for caveolae formation.


Subject(s)
Caveolins/chemistry , Caveolins/metabolism , Golgi Apparatus/metabolism , Caco-2 Cells , Caveolae/metabolism , Caveolae/ultrastructure , Caveolin 1 , Caveolin 2 , Caveolins/genetics , Humans , Membrane Microdomains/metabolism , Microscopy, Immunoelectron , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...