Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(39): 36493-500, 2001 Sep 28.
Article in English | MEDLINE | ID: mdl-11443119

ABSTRACT

The plant blue light receptor, phot1, a member of the phototropin family, is a plasma membrane-associated flavoprotein that contains two ( approximately 110 amino acids) flavin-binding domains, LOV1 and LOV2, within its N terminus and a typical serine-threonine protein kinase domain at its C terminus. The LOV (light, oxygen, and voltage) domains belong to the PAS domain superfamily of sensor proteins. In response to blue light, phototropins undergo autophosphorylation. E. coli-expressed LOV domains bind riboflavin-5'-monophosphate, are photochemically active, and have major absorption peaks at 360 and 450 nm, with the 450 nm peak having vibronic structure at 425 and 475 nm. These spectral features correspond to the action spectrum for phototropism in higher plants. Blue light excitation of the LOV2 domain generates, in less than 30 ns, a transient approximately 660 nm-absorbing species that spectroscopically resembles a flavin triplet state. This putative triplet state subsequently decays with a 4-micros time constant into a 390 nm-absorbing metastable form. The LOV2 domain (450 nm) recovers spontaneously with half-times of approximately 50 s. It has been shown that the metastable species is likely a flavin-cysteine (Cys(39) thiol) adduct at the flavin C(4a) position. A LOV2C39A mutant generates the early photoproduct but not the adduct. Titrations of LOV2 using chromophore fluorescence as an indicator suggest that Cys(39) exists as a thiolate.


Subject(s)
Drosophila Proteins , Eye Proteins , Flavins/chemistry , Flavoproteins/chemistry , Photoreceptor Cells, Invertebrate , Photosynthesis , Plant Proteins/chemistry , Cell Membrane/metabolism , Cryptochromes , Cysteine/chemistry , Hydrogen-Ion Concentration , Kinetics , Light , Models, Chemical , Mutation , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled , Signal Transduction , Spectrometry, Fluorescence , Spectrophotometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...