Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Aging ; 3(3): 248-257, 2023 03.
Article in English | MEDLINE | ID: mdl-37118425

ABSTRACT

The geroscience hypothesis proposes that therapy to slow or reverse molecular changes that occur with aging can delay or prevent multiple chronic diseases and extend healthy lifespan1-3. Caloric restriction (CR), defined as lessening caloric intake without depriving essential nutrients4, results in changes in molecular processes that have been associated with aging, including DNA methylation (DNAm)5-7, and is established to increase healthy lifespan in multiple species8,9. Here we report the results of a post hoc analysis of the influence of CR on DNAm measures of aging in blood samples from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trial, a randomized controlled trial in which n = 220 adults without obesity were randomized to 25% CR or ad libitum control diet for 2 yr (ref. 10). We found that CALERIE intervention slowed the pace of aging, as measured by the DunedinPACE DNAm algorithm, but did not lead to significant changes in biological age estimates measured by various DNAm clocks including PhenoAge and GrimAge. Treatment effect sizes were small. Nevertheless, modest slowing of the pace of aging can have profound effects on population health11-13. The finding that CR modified DunedinPACE in a randomized controlled trial supports the geroscience hypothesis, building on evidence from small and uncontrolled studies14-16 and contrasting with reports that biological aging may not be modifiable17. Ultimately, a conclusive test of the geroscience hypothesis will require trials with long-term follow-up to establish effects of intervention on primary healthy-aging endpoints, including incidence of chronic disease and mortality18-20.


Subject(s)
Caloric Restriction , DNA Methylation , Humans , Adult , Caloric Restriction/methods , Energy Intake , Aging/genetics , Longevity
3.
Psychol Sci ; 29(5): 791-803, 2018 05.
Article in English | MEDLINE | ID: mdl-29513605

ABSTRACT

Drawing on psychological and sociological theories of crime causation, we tested the hypothesis that genetic risk for low educational attainment (assessed via a genome-wide polygenic score) is associated with criminal offending. We further tested hypotheses of how polygenic risk relates to the development of antisocial behavior from childhood through adulthood. Across the Dunedin and Environmental Risk (E-Risk) birth cohorts of individuals growing up 20 years and 20,000 kilometers apart, education polygenic scores predicted risk of a criminal record with modest effects. Polygenic risk manifested during primary schooling in lower cognitive abilities, lower self-control, academic difficulties, and truancy, and it was associated with a life-course-persistent pattern of antisocial behavior that onsets in childhood and persists into adulthood. Crime is central in the nature-nurture debate, and findings reported here demonstrate how molecular-genetic discoveries can be incorporated into established theories of antisocial behavior. They also suggest that improving school experiences might prevent genetic influences on crime from unfolding.


Subject(s)
Academic Success , Antisocial Personality Disorder/genetics , Conduct Disorder/genetics , Criminals , Genome-Wide Association Study , Problem Behavior , Adolescent , Adult , Antisocial Personality Disorder/epidemiology , Child , Child, Preschool , Conduct Disorder/epidemiology , Criminals/statistics & numerical data , Female , Genome-Wide Association Study/statistics & numerical data , Humans , Longitudinal Studies , Male , Multifactorial Inheritance , New Zealand/epidemiology , Risk Factors , United Kingdom/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...