Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(16): e202318040, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38349957

ABSTRACT

We report a highly enantioselective intermolecular C-H bond silylation catalyzed by a phosphoramidite-ligated iridium catalyst. Under reagent-controlled protocols, propargylsilanes resulting from C(sp3)-H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less-hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situ-generated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3-enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3-propargyl/allenyl Ir intermediate is generated upon π-complexation-assisted deprotonation and undergoes outer-sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step.

2.
Chem Commun (Camb) ; 58(82): 11523-11526, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36149344

ABSTRACT

Once considered to be exotic species of limited synthetic utility, vinyl cations have recently been shown to be highly versatile intermediates in a variety of processes. Here, we report a method for the synthesis of aryl-substituted benzocycloheptenes and -hexenes using the hydrotriflate salt of an electron-poor pyridine as a uniquely efficient proton source for a vinyl cation mediated Friedel-Crafts cyclization. The mild conditions made possible by this reagent allowed a range of simple and functionalized alkynes bearing pendant aryl groups to serve as suitable substrates for this scalable and convenient protocol.


Subject(s)
Alkynes , Protons , Alkynes/chemistry , Cations , Indicators and Reagents , Molecular Structure , Pyridines
SELECTION OF CITATIONS
SEARCH DETAIL
...