Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2086-2100, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166380

ABSTRACT

To make a drug work better, the active substance can be incorporated into a vehicle for optimal protection and control of the drug delivery time and space. For making the drug carrier, the porous metal-organic framework (MOF) can offer high drug-loading capacity and various designs for effective drug delivery performance, biocompatibility, and biodegradability. Nevertheless, its degradation process is complex and not easily predictable, and the toxicity concern related to the MOF degradation products remains a challenge for their clinical translation. Here, we describe an in-depth molecular and nanoscale degradation mechanism of aluminum- and iron-based nanoMIL-100 materials exposed to phosphate-buffered saline. Using a combination of analytical tools, including X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy, we demonstrate qualitatively and quantitatively the formation of a new coordination bond between metal(III) and phosphate, trimesate release, and correlation between these two processes. Moreover, the extent of material erosion, i.e., bulk or surface erosion, was examined from the transformation of nanoparticles' surface, morphology, and interaction with water. Similar analyses show the impact of drug loading and surface coating on nanoMIL-100 degradation and drug release as a function of the metal-ligand binding strength. Our results indicate how the chemistry of nanoMIL-100(Al) and nanoMIL-100(Fe) drug carriers affects their degradation behaviors in a simulated physiological medium. This difference in behavior between the two nanoMIL-100s enables us to better correlate the nanoscale and atomic-scale mechanisms of the observed phenomena, thus validating the presented multiscale approach.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Iron/chemistry , Phosphates , Drug Liberation
2.
Small ; 20(15): e2307034, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009507

ABSTRACT

The origin of the glass transition is still an open debate, especially for the new class of glasses, formed from metal-organic compounds. High-temperature in situ 2H Nuclear Magnetic Resonance (NMR) experiments are performed on deuterated samples of ZIF-62 (Zn(C3H4N2)2-x(C7H6N2)x, with x = 0.25 and x = 0.05), the prototypical metal-organic framework glass former. Using lineshape analysis, frequencies and angular amplitudes of oscillations of the imidazolate ring during heating up to the melt progressively increasing from ≈10 to 150 MHz, and from ≈5° to 25° are found. This behavior is compositionally dependent and points to the origin of the glass transition lying in organic linker movement, in a similar vein to that witnessed in some organics and contrary to the purely inorganic-based view of Metal-Organic Framework (MOF) glasses taken to date. This experimental approach shows the potential to elucidate the melting and/or decomposition process for a wide range of MOFs.

3.
J Mater Chem A Mater ; 11(46): 25465-25483, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38037625

ABSTRACT

Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.

4.
Inorg Chem ; 62(44): 18157-18171, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37871434

ABSTRACT

Copper(I) halides are well-known for their structural diversity and rich photoluminescence properties, showing great potential for the development of solid-state lighting technology. A series of four molecular copper iodide clusters based on the [Cu4I4] cubane geometry is reported. Among them, [Cu8I8] octanuclear clusters of rare geometry resulting from dimerization of the tetranuclear counterparts were also synthesized. Two different phosphine ligands were studied, bearing either a styrene or an ethyl group. Therefore, the effect of the dimerization and of the ligand nature on the photophysical properties of the resulting clusters is investigated. The structural differences were analyzed by single-crystal X-ray diffraction (SCXRD), solid-state nuclear magnetic resonance (NMR), infrared, and Raman analyses. Compared to the ethyl group, the styrene function appears to greatly impact the photophysical properties of the clusters. The luminescence thermochromic properties of the ethyl derivatives and the intriguing photophysical properties of the clusters with styrene function were rationalized by density functional theory (DFT) calculations. Thus, the styrene group significantly lowers in energy the vacant orbitals and consequently affects the global energetic layout of the clusters. From this study, it was found that the nuclearity of copper iodide clusters eventually has less influence on the photophysical properties than the nature of the ligand. The design of proper ligands should therefore be considered when developing materials for specific lighting applications.

5.
ACS Phys Chem Au ; 3(4): 394-405, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37520313

ABSTRACT

Local Na-coordination and dynamics of Na2-xZn2-xGaxTeO6; x = 0.00 (NZTO), 0.05, 0.10, 0.15, 0.20, were studied by variable-temperature, 23Na NMR methods and DFT AIMD simulations. Structure and dynamics were probed by NMR in the temperature ranges of 100-293 K in a magnetic field of 18.8 T and from 293 up to 500 K in a magnetic field of 11.7 T. Line shapes and T1 relaxation constants were analyzed. At 100 K, the otherwise dynamic Na-ions are frozen out on the NMR time scale, and a local structure characterization was performed for Na-ions at three interlayer sites. On increasing the temperature, complex peak shape coalescences occurred, and at 293 K, the Na NMR spectra showed some averaging due to Na-ion dynamics. A further increase to 500 K did not reveal any new peak shape variations until the highest temperatures, where an apparent peak splitting was observed, similar to what was observed in the 18.8 T experiments at lower temperatures. A three-site exchange model coupled with reduced quadrupolar couplings due to dynamics appear to explain these peak shape observations. The Ga substitution increases the Na-jumping rate, as proved by relaxation measurements and by a decrease in temperature for peak coalescence. The estimated activation energy for Na dynamics in the NZTO sample, from relaxation measurements, corresponds well to results from DFT AIMD simulations. Upon Ga substitution, measured activation energies are reduced, which is supported, in part, by DFT calculations. Addressing the correlated motion of Na-ions appears important for solid-state ion conductors since benefits can be gained from the decrease in activation energy upon Ga substitution, for example.

6.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430944

ABSTRACT

Tuberculosis (TB) is still a significant threat to human health. A promising solution is engineering nanoparticulate drug carriers to deliver anti-TB molecules. Itaconic acid (ITA) potentially has anti-TB activity; however, its incorporation in nanoparticles (NP) is challenging. Here we show an approach for preparing polymer-ITA conjugate NPs and a methodology for investigating the NP degradation and ITA release mechanism. The conjugate was synthesized by the two-directional growing of polylactic acid (PLA) chains, followed by capping their extremities with ITA. The poly(lactate)-itaconate PLA-ITA was then used to formulate NPs. The degradation and drug release processes of the polymer conjugate NPs were studied qualitatively and quantitatively. The molecular structures of released species were characterized by using liquid NMR spectroscopy and mass spectrometry. We discovered a complex NP hydrolysis process forming diverse oligomers, as well as monomeric lactic acid (LA) and drug ITA. The slow degradation process led to a low release of free drugs, although raising the pH from 5.3 to 7.4 induced a slight increase in the amounts of released products. TEM images showed that bulk erosion is likely to play the primary role in the degradation of PLA-ITA NPs. The overall results and methodology can be of interest for understanding the mechanisms of NP degradation and drug release of this new polymer-drug conjugate system.


Subject(s)
Nanoparticles , Polymers , Humans , Polymers/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Succinates
7.
Pharmaceutics ; 13(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34959274

ABSTRACT

Vancomycin (VCM) is a last resort antibiotic in the treatment of severe Gram-positive infections. However, its administration is limited by several drawbacks such as: strong pH-dependent charge, tendency to aggregate, low bioavailability, and poor cellular uptake. These drawbacks were circumvented by engineering pH-responsive nanoparticles (NPs) capable to incorporate high VCM payload and deliver it specifically at slightly acidic pH corresponding to infection sites. Taking advantage of peculiar physicochemical properties of VCM, here we show how to incorporate VCM efficiently in biodegradable NPs made of poly(lactic-co-glycolic acid) and polylactic acid (co)polymers. The NPs were prepared by a simple and reproducible method, establishing strong electrostatic interactions between VCM and the (co)polymers' end groups. VCM payloads reached up to 25 wt%. The drug loading mechanism was investigated by solid state nuclear magnetic resonance spectroscopy. The engineered NPs were characterized by a set of advanced physicochemical methods, which allowed examining their morphology, internal structures, and chemical composition on an individual NP basis. The compartmentalized structure of NPs was evidenced by cryogenic transmission electronic microscopy, whereas the chemical composition of the NPs' top layers and core was obtained by electron microscopies associated with energy-dispersive X-ray spectroscopy. Noteworthy, atomic force microscopy coupled to infrared spectroscopy allowed mapping the drug location and gave semiquantitative information about the loadings of individual NPs. In addition, the NPs were stable upon storage and did not release the incorporated drug at neutral pH. Interestingly, a slight acidification of the medium induced a rapid VCM release. The compartmentalized NPs could find potential applications for controlled VCM release at an infected site with local acidic pH.

8.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299416

ABSTRACT

In the past decades, nanosized drug delivery systems (DDS) have been extensively developed and studied as a promising way to improve the performance of a drug and reduce its undesirable side effects. DDSs are usually very complex supramolecular assemblies made of a core that contains the active substance(s) and ensures a controlled release, which is surrounded by a corona that stabilizes the particles and ensures the delivery to the targeted cells. To optimize the design of engineered DDSs, it is essential to gain a comprehensive understanding of these core-shell assemblies at the atomic level. In this review, we illustrate how solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become an essential tool in DDS design.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Polymers/chemistry
9.
Chemistry ; 27(37): 9589-9596, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33830553

ABSTRACT

The synthesis and characterization of a polyrotaxanated covalent organic network (CON) based on the association between the viologen and pillar[5]arene (P[5]OH) units are reported. The mechanical bond allows for the irreversible insertion of n-type redox centers (P[5]OH macrocycles) within a pristine structure based on p-type viologen redox centers. Both redox units are active on a narrow potential range and, in water, the presence of P[5]OH greatly increases the electroactivity of the material.

10.
Nanomaterials (Basel) ; 11(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917756

ABSTRACT

Recently developed, nanoscale metal-organic frameworks (nanoMOFs) functionalized with versatile coatings are drawing special attention in the nanomedicine field. Here we show the preparation of core-shell MIL-100(Al) nanoMOFs for the delivery of the anticancer drug doxorubicin (DOX). DOX was efficiently incorporated in the MOFs and was released in a progressive manner, depending on the initial loading. Besides, the coatings were made of biodegradable γ-cyclodextrin-citrate oligomers (CD-CO) with affinity for both DOX and the MOF cores. DOX was incorporated and released faster due to its affinity for the coating material. A set of complementary solid state nuclear magnetic resonance (ssNMR) experiments including 1H-1H and 13C-27Al two-dimensional NMR, was used to gain a deep understanding on the multiple interactions involved in the MIL-100(Al) core-shell system. To do so, 13C-labelled shells were synthesized. This study paves the way towards a methodology to assess the nanoMOF component localization at a molecular scale and to investigate the nanoMOF physicochemical properties, which play a main role on their biological applications.

11.
Magn Reson Chem ; 59(9-10): 1038-1047, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33709480

ABSTRACT

Nanosized metal-organic frameworks (nanoMOFs) have emerged as a new class of biodegradable and nontoxic nanomaterials of high interest for biomedical applications thanks to the possibility to load large amounts of a wide variety of therapeutic molecules in their porous structure. The surface of the highly porous nanoMOFs is usually engineered to increase their colloidal stability, to tune their interactions with the biological environment, and to allow targeting specific cells or organs. However, the atomic-scale analysis of these complex core-shell materials is highly challenging. In this study, we report the investigation of aluminum-based nanoMOFs containing two fluorinated lipids by solid-state NMR spectroscopy, including 27 Al, 1 H and 19 F MAS NMR. The ensemble of NMR data provides a better understanding of the localization and conformation of the fluorinated lipids inside the pores or on the nanoMOF surface.

12.
Inorg Chem ; 59(18): 13607-13620, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32909432

ABSTRACT

In the field of stimuli-responsive luminescent materials, mechanochromic compounds exhibiting reversible emission color changes activated by mechanical stimulation present appealing perspectives in sensor applications. The mechanochromic luminescence properties of the molecular cubane copper iodide cluster [Cu4I4[PPh2(C6H4-CH2OH)]4] (1) are reported in this study. This compound can form upon melting an amorphous phase, giving an unprecedented opportunity to investigate the mechanochromism phenomenon. Because the mechanically induced crystalline-to-amorphous transition is only partial, the completely amorphous phase represents the ultimate state of the mechanically altered phase. Furthermore, the studied compound could form two different crystalline polymorphs, namely, [Cu4I4[PPh2(C6H4-CH2OH)]4]·C2H3N (1·CH3CN) and [Cu4I4[PPh2(C6H4-CH2OH)]4]·3C4H8O (1·THF), allowing the establishment of straightforward structure-property relationships. Photophysical and structural characterizations of 1 in different states were performed, and the experimental data were supported by theoretical investigations. Solid-state NMR analysis permitted quantification of the amorphous part in the mechanically altered phase. IR and Raman analysis enabled identification of the spectroscopic signatures of each state. Density functional theory calculations led to assignment of both the NMR characteristics and the vibrational bands. Rationalization of the photoluminescence properties was also conducted, with simulation of the phosphorescence spectra allowing an accurate interpretation of the thermochromic luminescence properties of this family of compounds. The combined study of crystalline polymorphism and the amorphous state allowed us to get deeper into the mechanochromism mechanism that implies changes of the [Cu4I4] cluster core geometry. Through the combination of multistimuli-responsive properties, copper iodide clusters constitute an appealing class of compounds toward original functional materials.

13.
Prog Nucl Magn Reson Spectrosc ; 118-119: 74-90, 2020.
Article in English | MEDLINE | ID: mdl-32883450

ABSTRACT

Hyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature - as in the case of dynamic nuclear polarization - or at high temperature in the gaseous state - as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Magnetic Fields
14.
Inorg Chem ; 59(14): 10129-10137, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32628480

ABSTRACT

Vapor-phase infiltration (VPI), a technique derived from atomic layer deposition (ALD) and based on sequential self-limiting chemistry, is used to modify the stable microporous porphyrin-based metal-organic framework (MOF) MIL-173(Zr). VPI is an appealing approach to modifying MOFs by inserting reactants with atomic precision. The microporous nature and chemical stability of MIL-173 enable postsynthesis modification by VPI without MOF degradation even with extremely reactive precursors such as trimethylaluminum (TMA) and diethylzinc (DEZ). VPI proceeds through the diffusion of gaseous organometallic reactants TMA and DEZ inside the microporous framework, where they react with two kinds of chemical sites offered by the porphyrinic linker (phenolic and pyrrolic functions in the porphyrin core), without altering the crystallinity and permanent porosity of the MOF. 27Al NMR, UV-vis absorption, and IR spectroscopies are used to further characterize the modified material. Physisorption of both precursors is computationally simulated by grand canonical Monte Carlo methods and outlines the preferential adsorption sites. The impact of temperature, number of VPI cycles, and pulse length are investigated and show that aluminum and zinc are introduced in a saturating manner inside the MOF on both available reactive sites. The porosity prerequisite is outlined for VPI, which is proven to be much more effective than classical solution-based methods because it is solventless and fast, prevents workup steps, and allows reactions not possible by the classical solution approach.

15.
J Colloid Interface Sci ; 576: 158-175, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32416548

ABSTRACT

A bioadsorbent (CEDA) capable of adsorbing As(V) and Cu(II) simultaneously was prepared by tosylation of microcrystalline cellulose (MC) and nucleophilic substitution of the tosyl group by ethylenediamine. MC, tosyl cellulose, and CEDA were characterized by elemental C, H, N, and S analysis, infrared spectroscopy, and 13C solid-state nuclear magnetic resonance spectroscopy. The adsorption of As(V) and Cu(II) on CEDA was evaluated as a function of solution pH, contact time, and initial solute concentration. The maximum adsorption capacities of CEDA for As(V) and Cu(II) were 1.62 and 1.09 mmol g-1, respectively. The interactions of As(V) and Cu(II) with CEDA were elucidated using thermodynamic parameters, molecular quantum mechanics calculations, and experiments with ion exchange of Cd(II) by Cu(II), and As(V) by SO42-. Adsorption enthalpies were determined as a function of surface coverage of the CEDA, using isothermal titration calorimetry, with ΔadsH° values of -32.24 ± 0.07 and -93 ± 2 kJ mol-1 obtained for As(V) and Cu(II), respectively. The potential to reuse CEDA was evaluated and the interference of other ions in the adsorption of As(V) and Cu(II) was investigated. Multi-component experiments showed that Cd(II), Co(II), Ni(II), and Pb(II) did not interfere in the adsorption of Cu(II), while SO42- inhibited As(V) adsorption.


Subject(s)
Water Pollutants, Chemical , Adsorption , Cellulose , Copper , Hydrogen-Ion Concentration , Kinetics , Solutions , Water
16.
Int J Pharm ; 585: 119442, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32445910

ABSTRACT

Lansoprazole (LPZ) is an acid pump inhibitor, which readily degrades upon acidic or basic conditions and under heating. We investigated here LPZ stability upon incorporation in particles made of cyclodextrin metal-organic frameworks (CD-MOFs). LPZ loaded CD-MOFs were successfully synthesized, reaching high LPZ payloads of 23.2 ± 2.1 wt%, which correspond to a molar ratio of 1:1 between LPZ and γ-CD. The homogeneity of LPZ loaded CD-MOFs in terms of component distribution was confirmed by elemental mapping by STEM-EDX. Both CTAB, the surfactant used in the CD-MOFs synthesis, and LPZ compete for their inclusion in the CD cavities. CTAB allowed obtaining regular cubic particles of around 5 µm with 15 wt% residual CTAB amounts. When LPZ was incorporated, the residual CTAB amount was less than 0.1 wt%, suggesting a higher affinity of LPZ for the CDs than CTAB. These findings were confirmed by molecular simulations. Vibrational circular dichroism studies confirmed the LPZ incorporation inside the CDs. Solid-state NMR showed that LPZ was located in the CDs and that it remained intact even after three years storage. Remarkably, the CD-MOFs matrix protected the drug upon thermal decomposition. This study highlights the interest of CD-MOFs for the incorporation and protection of LPZ.


Subject(s)
Cyclodextrins/chemistry , Lansoprazole/administration & dosage , Metal-Organic Frameworks/chemistry , Cetrimonium/chemistry , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Stability , Microscopy, Electron, Transmission , Particle Size , X-Ray Diffraction , gamma-Cyclodextrins/chemistry
17.
Inorg Chem ; 59(9): 6308-6318, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286067

ABSTRACT

A crystallographic approach incorporating multinuclear high field solid state NMR (SSNMR), X-ray structure determinations, TEM observation, and density functional theory (DFT) was used to characterize two polymorphs of rubidium cryolite, Rb3AlF6. The room temperature phase was found to be ordered and crystallizes in the Fddd (no. 70) space group with a = 37.26491(1) Å, b = 12.45405(4) Å, and c = 17.68341(6) Å. Comparison of NMR measurements and computational results revealed the dynamic rotations of the AlF6 octahedra. Using in situ variable temperature MAS NMR measurements, the chemical exchange between rubidium sites was observed. The ß-phase, i.e., high temperature polymorph, adopts the ideal cubic double-perovskite structure, space group Fm3m, with a = 8.9930(2) Å at 600 °C. Additionally, a series of polymorphs of K3AlF6 has been further characterized by high field high temperature SSNMR and DFT computation.

18.
Inorg Chem ; 59(8): 5768-5780, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32233459

ABSTRACT

The photoluminescent stimuli-responsive properties of two crystalline polymorphs with the formula (PPh4)2[Cu2I4] are reported. Distinct luminescence properties are exhibited by these ionic copper iodide compounds with blue or yellow emission, and original luminescence thermochromism and mechanochromism are demonstrated. While one polymorph displays contrasted temperature-dependent emission properties, the other shows great modification of its emission upon mechanical solicitation. The establishment of structure-properties relationships, supported by a theoretical approach, permits us to get insights into the origin of the photoluminescence properties and the mechanisms at play. According to DFT calculations, the different emission bands originate either from the (PPh4)+ organic cation or from the [Cu2I4]2- anion. Activation of these two emissive centers appears to be dependent on the crystalline packing of the polymorph. The thermochromism displayed by one polymorph can be attributed to a variation in temperature of the relative intensities of two emission bands of two different excited states. The origin is different for the other polymorph, with emission bands coming from two independent emissive centers: namely, (PPh4)+ and [Cu2I4]2-. The luminescence mechanochromism is attributed to a polymorphic transition. The mechanical solicitation induces a partial transformation of one polymorph into the other within a disordered phase. The mechanochromic mechanism can be related to mechanical modifications of intermolecular interactions between the (PPh4)+ cations. By displaying luminescence properties that depend on crystalline structure, excitation wavelength, temperature, and mechanical solicitation, the studied copper iodides offer a great possibility of emissive color control and switching, a clear demonstration of the great potentialities of this family of compounds for the development of photoactive materials.

19.
Magn Reson Chem ; 58(11): 1099-1108, 2020 11.
Article in English | MEDLINE | ID: mdl-31945203

ABSTRACT

In the present work, our aim is to decipher the cationic ordering in the octahedral and tetrahedral sheets of two Al-rich synthetic materials, namely, phlogopites of nominal composition K(Mg3-x Alx )[Al1+x Si3-x O10 ](OH)y F2-y and lepidolites in the system trilithionite-polylithionite with composition K (Lix Al3-x )[Al4-2x Si2x O10 ](OH)y F2-y , by directly probing the aluminium distribution through 27 Al and 17 O magic-angle spinning, multiple-quantum magic-angle spinning, and 27 Al-27 Al double-quantum single-quantum nuclear magnetic resonance (NMR) experiments. Notably, 27 Al-27 Al double-quantum single-quantum magic-angle spinning NMR spectra, recorded at 9.34 and/or 20.00 T, show the spatial proximity or avoidance of the Al species inside or between the sheets. In both studied minerals, the ensemble of NMR data suggests a preference for [4] Al in the tetrahedral sheet to occupy position close to the [6] Al of the octahedral sheets.

20.
J Am Chem Soc ; 141(43): 17207-17216, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31590484

ABSTRACT

Engineering the structural flexibility of metal-organic framework (MOF) materials for separation-related applications remains a great challenge. We present here a strategy of mixing rigid and soft linkers in a MOF structure to achieve tunable structural flexibility, as exemplified in a series of stable isostructural Zr-MOFs built with natural C4 linkers (fumaric acid, succinic acid, and malic acid). As shown by the differences in linker bond stretching and bending freedom, these MOFs display distinct responsive dynamics to external stimuli, namely, changes in temperature or guest molecule type. Comprehensive in situ characterizations reveal a clear correlation between linker character and MOF dynamic behavior, which leads to the discovery of a multivariate flexible MOF. It shows an optimal combination of both good working capacity and significantly enhanced selectivity for CO2/N2 separation. In principle, it provides a new avenue for potentially improving the ability of microporous MOFs to separate other gaseous and liquid mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...