Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(13): 135001, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37831999

ABSTRACT

Plasma wakefield accelerators driven by particle beams are capable of providing accelerating gradient several orders of magnitude higher than currently used radio-frequency technology, which could reduce the length of particle accelerators, with drastic influence on the development of future colliders at TeV energies and the minimization of x-ray free-electron lasers. Since interplasma components and distances are among the biggest contributors to the total accelerator length, the design of staged plasma accelerators is one of the most important outstanding questions in order to render this technology instrumental. Here, we present a novel concept to optimize interplasma distances in a staged beam-driven plasma accelerator by drive-beam coupling in the temporal domain and gating the accelerator via a femtosecond ionization laser.

2.
Nat Commun ; 12(1): 2895, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001874

ABSTRACT

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m-1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.

3.
Sci Rep ; 9(1): 19020, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31836730

ABSTRACT

Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200-300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180184, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230576

ABSTRACT

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

5.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180173, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230577

ABSTRACT

Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. In the context of the FACET II facility, we present simulation results on expected betatron radiation and its potential application to diagnose emittance preservation and hosing instability in the upcoming PWFA experiments. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

6.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180175, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230579

ABSTRACT

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

7.
Phys Rev Lett ; 120(25): 254802, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29979083

ABSTRACT

Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultrashort, compact, and spatially coherent x-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron sources is limited by a low energy efficiency and a photon energy in the 10 s of kiloelectronvolt range, which for example prohibits the use of these sources for probing dense matter. Here, based on three-dimensional particle-in-cell simulations, we propose an original hybrid scheme that combines a low-density laser-driven plasma accelerator with a high-density beam-driven plasma radiator, thereby considerably increasing the photon energy and the radiated energy of the betatron source. The energy efficiency is also greatly improved, with about 1% of the laser energy transferred to the radiation, and the γ-ray photon energy exceeds the megaelectronvolt range when using a 15 J laser pulse. This high-brilliance hybrid betatron source opens the way to a wide range of applications requiring MeV photons, such as the production of medical isotopes with photonuclear reactions, radiography of dense objects in the defense or industrial domains, and imaging in nuclear physics.

8.
Nat Commun ; 9(1): 1814, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720590

ABSTRACT

The original version of this Article contained an error in the last sentence of the first paragraph of the Introduction and incorrectly read 'A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime in equation 11, nx(n-ß) x ß: n the two times and beta the two times should be bold since they are vectorsin Eq. 12, ß should be bold as well.' The correct version is 'A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime.'This has been corrected in both the PDF and HTML versions of the Article.

9.
Phys Rev Lett ; 120(12): 124802, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694092

ABSTRACT

Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

10.
Nat Commun ; 9(1): 1334, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29626187

ABSTRACT

With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality.

11.
Sci Rep ; 7(1): 14180, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079817

ABSTRACT

High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. In these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. The results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

12.
Nat Commun ; 7: 12483, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527569

ABSTRACT

The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

13.
Nat Commun ; 7: 11898, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312720

ABSTRACT

Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

14.
Sci Rep ; 6: 27846, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324915

ABSTRACT

Laser pulses in current ultra-short TW systems are far from being ideal Gaussian beams. The influence of the presence of non-Gaussian features of the laser pulse is investigated here from experiments and 3D Particle-in-Cell simulations. Both the experimental intensity distribution and wavefront are used as input in the simulations. It is shown that a quantitative agreement between experimental data and simulations requires to use realistic pulse features. Moreover, some trends found in the experiments, such as the growing of the X-ray signal with the plasma length, can only be retrieved in simulations with realistic pulses. The performances on the electron acceleration and the synchrotron X-ray emission are strongly degraded by these non-Gaussian features, even keeping constant the total laser energy. A drop on the X-ray photon number by one order of magnitude was found. This clearly put forward the limitation of using a Gaussian beam in the simulations.

15.
Nature ; 524(7566): 442-5, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26310764

ABSTRACT

Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.

16.
Med Phys ; 42(2): 663-73, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25771556

ABSTRACT

PURPOSE: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. METHODS: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position­time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. RESULTS: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position­time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. CONCLUSIONS: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position­time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery.


Subject(s)
Brachytherapy/instrumentation , Phantoms, Imaging , Radiation Dosage , Gamma Rays/therapeutic use , Humans , Quality Control , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Time Factors , Tomography, X-Ray Computed
17.
Med Phys ; 42(2): 663-673, 2015 Feb.
Article in English | MEDLINE | ID: mdl-28102606

ABSTRACT

PURPOSE: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. METHODS: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. RESULTS: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. CONCLUSIONS: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position-time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery.


Subject(s)
Brachytherapy/instrumentation , Phantoms, Imaging , Radiotherapy Dosage/standards , Radiotherapy Planning, Computer-Assisted/instrumentation , Brachytherapy/methods , Calibration , Catheters , Equipment Design , Film Dosimetry , Quality Control , Radiotherapy Planning, Computer-Assisted/methods , Software , Time Factors , Tomography, X-Ray Computed
18.
Nature ; 515(7525): 92-5, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25373678

ABSTRACT

High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

19.
Phys Rev Lett ; 112(2): 025001, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484020

ABSTRACT

We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43 GV/m to a strongly loaded value of 26 GV/m.

20.
Med Phys ; 40(11): 111702, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24320410

ABSTRACT

PURPOSE: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly (192)Ir with an air KERMA strength range between 20,000 and 40,000 U, where 1 U = 1 µGy m(2)/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named "magic phantom." METHODS: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array "magic plate" (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the (192)Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a (192)Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ. RESULTS: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively. CONCLUSIONS: Our characterization of the designed QA "magic phantom" with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.


Subject(s)
Brachytherapy/methods , Air , Algorithms , Catheters , Equipment Design , Feasibility Studies , Humans , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Needles , Phantoms, Imaging , Quality Control , Radiometry/methods , Radiotherapy Dosage , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...