Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 23(11): 943-955, 2023.
Article in English | MEDLINE | ID: mdl-36748811

ABSTRACT

BACKGROUND: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC). OBJECTIVES: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells. METHODS: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT). RESULTS: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4- NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells. CONCLUSION: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells.


Subject(s)
Androgens , Prostatic Neoplasms , Humans , Male , Docetaxel/pharmacology , Androgens/pharmacology , Androgens/therapeutic use , Taxoids/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation
2.
Int J Biochem Cell Biol ; 127: 105838, 2020 10.
Article in English | MEDLINE | ID: mdl-32858191

ABSTRACT

Epidermal growth factor receptor is a cancer driver whose nuclear localization has been associated with the progression of prostate cancer to the castration-resistant phenotype. Previous reports indicated a functional interaction between this receptor and the protein Annexin A1, which has also been associated with aggressive tumors. The molecular pathogenesis of castration-resistant prostate cancer remains largely unresolved, and herein we have demonstrated the correlation between the expression levels and localization of the epidermal growth factor receptor and Annexin A1 in prostate cancer samples and cell lines. Interestingly, a higher expression of both proteins was detected in castration-resistant prostate cancer cell lines and the strongest correlation was seen at the nuclear level. We verified that Annexin A1 interacts with the epidermal growth factor receptor, and by using prostate cancer cell lines knocked down for Annexin A1, we succeeded in demonstrating that Annexin A1 promotes the nuclear localization of epidermal growth factor receptor. Finally, we showed that Annexin A1 activates an autocrine signaling in castration-resistant prostate cells through the formyl peptide receptor 1. The inhibition of such signaling by Cyclosporin H inhibits the nuclear localization of epidermal growth factor receptor and its downstream signaling. The present work sheds light on the functional interaction between nuclear epidermal growth factor receptor and nuclear Annexin A1 in castration-resistant prostate cancer. Therefore, strategies to inhibit the nuclear localization of epidermal growth factor receptor through the suppression of the Annexin A1 autocrine loop could represent an important intervention strategy for castration-resistant prostate cancer.


Subject(s)
Annexin A1/metabolism , Cell Nucleus/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Aged , Annexin A1/genetics , Autocrine Communication/physiology , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Male , Middle Aged , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Signal Transduction
3.
Int J Mol Sci ; 20(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884823

ABSTRACT

Triple-negative breast cancers (TNBCs) are more aggressive than other breast cancer (BC) subtypes and lack effective therapeutic options. Unraveling marker events of TNBCs may provide new directions for development of strategies for targeted TNBC therapy. Herein, we reported that Annexin A1 (AnxA1) and Cathepsin D (CatD) are highly expressed in MDA-MB-231 (TNBC lineage), compared to MCF-10A and MCF-7. Since the proposed concept was that CatD has protumorigenic activity associated with its ability to cleave AnxA1 (generating a 35.5 KDa fragment), we investigated this mechanism more deeply using the inhibitor of CatD, Pepstatin A (PepA). Fourier Transform Infrared (FTIR) spectroscopy demonstrated that PepA inhibits CatD activity by occupying its active site; the OH bond from PepA interacts with a CO bond from carboxylic acids of CatD catalytic aspartate dyad, favoring the deprotonation of Asp33 and consequently inhibiting CatD. Treatment of MDA-MB-231 cells with PepA induced apoptosis and autophagy processes while reducing the proliferation, invasion, and migration. Finally, in silico molecular docking demonstrated that the catalytic inhibition comprises Asp231 protonated and Asp33 deprotonated, proving all functional results obtained. Our findings elucidated critical CatD activity in TNBC cell trough AnxA1 cleavage, indicating the inhibition of CatD as a possible strategy for TNBC treatment.


Subject(s)
Annexin A1/genetics , Cathepsin D/genetics , Molecular Docking Simulation , Triple Negative Breast Neoplasms/drug therapy , Apoptosis/drug effects , Autophagy/drug effects , Catalytic Domain/drug effects , Cathepsin D/antagonists & inhibitors , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Pepstatins/pharmacology , Spectroscopy, Fourier Transform Infrared , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...