Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 9(3): 328-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20796245

ABSTRACT

Chloroplast DNA sequence data are a versatile tool for plant identification or barcoding and establishing genetic relationships among plant species. Different chloroplast loci have been utilized for use at close and distant evolutionary distances in plants, and no single locus has been identified that can distinguish between all plant species. Advances in DNA sequencing technology are providing new cost-effective options for genome comparisons on a much larger scale. Universal PCR amplification of chloroplast sequences or isolation of pure chloroplast fractions, however, are non-trivial. We now propose the analysis of chloroplast genome sequences from massively parallel sequencing (MPS) of total DNA as a simple and cost-effective option for plant barcoding, and analysis of plant relationships to guide gene discovery for biotechnology. We present chloroplast genome sequences of five grass species derived from MPS of total DNA. These data accurately established the phylogenetic relationships between the species, correcting an apparent error in the published rice sequence. The chloroplast genome may be the elusive single-locus DNA barcode for plants.


Subject(s)
DNA, Chloroplast/genetics , Genome, Chloroplast/genetics , Poaceae/classification , Poaceae/genetics , Base Sequence , High-Throughput Nucleotide Sequencing , Phylogeny , Reference Standards , Sequence Alignment
2.
Theor Appl Genet ; 113(2): 331-43, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16791699

ABSTRACT

Commercial sugarcane cultivars (Saccharum spp. hybrids) are both polyploid and aneuploid with chromosome numbers in excess of 100; these chromosomes can be assigned to 8 homology groups. To determine the utility of single nucleotide polymorphisms (SNPs) as a means of improving our understanding of the complex sugarcane genome, we developed markers to a suite of SNPs identified in a list of sugarcane ESTs. Analysis of 69 EST contigs showed a median of 9 SNPs per EST and an average of 1 SNP per 50 bp of coding sequence. The quantitative presence of each base at 58 SNP loci within 19 contiguous sequence sets was accurately and reliably determined for 9 sugarcane genotypes, including both commercial cultivars and ancestral species, through the use of quantitative light emission technology in pyrophosphate sequencing. Across the 9 genotypes tested, 47 SNP loci were polymorphic and 11 monomorphic. Base frequency at individual SNP loci was found to vary approximately twofold between Australian sugarcane cultivars and more widely between cultivars and wild species. Base quantity was shown to segregate as expected in the IJ76-514 x Q165 sugarcane mapping population, indicating that SNPs that occur on one or two sugarcane chromosomes have the potential to be mapped. The use of SNP base frequencies from five of the developed markers was able to clearly distinguish all genotypes in the population. The use of SNP base frequencies from a further six markers within an EST contig was able to help establish the likely copy number of the locus in two genotypes tested. This is the first instance of a technology that has been able to provide an insight into the copy number of a specific gene locus in hybrid sugarcane. The identification of specific and numerous haplotypes/alleles present in a genotype by pyrophosphate sequencing or alternative techniques ultimately will provide the basis for identifying associations between specific alleles and phenotype and between allele dosage and phenotype in sugarcane.


Subject(s)
Expressed Sequence Tags , Polymorphism, Single Nucleotide , Saccharum/genetics , Alleles , Base Sequence , DNA Primers , Gene Dosage , Genetic Markers , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...