Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Mycoses ; 67(5): e13728, 2024 May.
Article in English | MEDLINE | ID: mdl-38695201

ABSTRACT

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
2.
Future Microbiol ; 19(6): 495-508, 2024.
Article in English | MEDLINE | ID: mdl-38629920

ABSTRACT

Aim: To evaluate the action of promethazine, fluoxetine and carbonyl cyanide 3-chlorophenylhydrazone as efflux pump inhibitors (EPIs) against multidrug-resistant Pseudomonas aeruginosa. Methods: The effect of the compounds was evaluated in planktonic cells and bacterial biofilms. Accumulation tests were performed with ethidium bromide to prove their action as EPIs. Then, they were associated with antimicrobials. Results: Effect on planktonic cells and biofilms was found. Assays with ethidium bromide indicate their action as EPIs. Significant reductions in the metabolic activity of biofilms were observed after the association with the antimicrobials, especially for meropenem. Conclusion: It is possible to prove the action of these compounds as EPIs for P. aeruginosa and demonstrate the relevance of efflux pumps in antimicrobial resistance.


[Box: see text].


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Repositioning , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Promethazine/pharmacology , Membrane Transport Proteins/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Hydrazones
3.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37791895

ABSTRACT

This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.


Subject(s)
Honey , Staphylococcus aureus , Animals , Swine , Promethazine/pharmacology , Deferiprone/pharmacology , Biofilms , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
4.
Biofouling ; 39(7): 719-729, 2023.
Article in English | MEDLINE | ID: mdl-37698054

ABSTRACT

The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of Candida biofilms and reinforce the importance of PC in the pathogenesis of VVC.

5.
Future Microbiol ; 18: 785-794, 2023 08.
Article in English | MEDLINE | ID: mdl-37622278

ABSTRACT

Aim: This study evaluated the effect of fluoxetine (FLU) on planktonic and biofilm growth and the antimicrobial susceptibility of Burkholderia pseudomallei. Materials & methods: The minimum inhibitory concentrations (MICs) for FLU were determined by broth microdilution. Its effect on growing and mature biofilms and its interaction with antibacterial drugs were evaluated by assessing biofilm metabolic activity, biomass and structure through confocal microscopy. Results: The FLU MIC range was 19.53-312.5 µg/ml. FLU eradicated growing and mature biofilms of B. pseudomallei at 19.53-312.5 µg/ml and 1250-2500 µg/ml, respectively, with no structural alterations and enhanced the antibiofilm activity of antimicrobial drugs. Conclusion: These results bring perspectives for the use of FLU in the treatment of melioidosis, requiring further studies to evaluate its applicability.


Subject(s)
Anti-Infective Agents , Burkholderia pseudomallei , Fluoxetine/pharmacology , Plankton , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Biofilms , Microbial Sensitivity Tests
6.
J Fungi (Basel) ; 9(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37623615

ABSTRACT

The present study aimed to describe the clinical, epidemiological and laboratory characteristics of invasive candidiasis by C. parapsilosis complex (CPC) in a Brazilian tertiary pediatric hospital during the COVID-19 pandemic. Clinical samples were processed in the BACT/ALERT® 3D system or on agar plates. Definitive identification was achieved by MALDI-TOF MS. Antifungal susceptibility was initially analyzed by the VITEK 2 system (AST-YS08 card) and confirmed by the CLSI protocol. Patient data were collected from the medical records using a structured questionnaire. CPC was recovered from 124 patients over an 18-month period, as follows: C. parapsilosis (83.87%), C. orthopsilosis (13.71%) and C. metapsilosis (2.42%). Antifungal resistance was not detected. The age of the patients with invasive CPC infections ranged from <1 to 18 years, and most of them came from oncology-related sectors, as these patients were more affected by C. parapsilosis. C. orthopsilosis infections were significantly more prevalent in patients from critical care units. Invasive infections caused by different pathogens occurred in 75 patients up to 30 days after the recovery of CPC isolates. Overall, 23 (18.55%) patients died within 30 days of CPC diagnosis. Catheter removal and antifungal therapy were important measures to prevent mortality. COVID-19 coinfection was only detected in one patient.

7.
Biofouling ; 39(2): 189-203, 2023 02.
Article in English | MEDLINE | ID: mdl-37144566

ABSTRACT

This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 µg/mL and minimum biofilm eradication concentration range was 781.25-3.125 µg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.


Subject(s)
Endocarditis , Gram-Positive Cocci , Humans , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Promethazine/pharmacology , Ceftriaxone/pharmacology , Biofilms , Oxacillin/pharmacology , Staphylococcus , Microbial Sensitivity Tests
8.
Biofouling ; 39(2): 218-230, 2023 02.
Article in English | MEDLINE | ID: mdl-37122169

ABSTRACT

Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 µg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.


Subject(s)
Antifungal Agents , Trichosporon , Humans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Promethazine/pharmacology , Promethazine/metabolism , Biofilms , Plankton , Microbial Sensitivity Tests
9.
J Microbiol Methods ; 208: 106721, 2023 05.
Article in English | MEDLINE | ID: mdl-37031894

ABSTRACT

Ex vivo experiments have been performed aiming at mimicking in vivo environments. The main aim of this research was to standardize in vitro dual-species biofilm formation by Staphylococcus pseudintermedius and Malassezia pachydermatis as a strategy to establish an ex vivo biofilm model. Initially, the in vitro formation of biofilms in co-culture was established, using YPD medium, inoculum turbidity of 0.5 on the McFarland scale and maturation periods of 96 h for M. pachydermatis and 48 h for S. pseudintermedius. Subsequently, biofilms were formed on porcine skin using the same conditions, under which a greater number of cells/ml was observed in in vitro dual-species than in in vitro mono-species biofilms. Furthermore, ex vivo biofilm images demonstrated the formation of a highly structured biofilm with the presence of cocci and yeasts surrounded by the matrix. Thus, these conditions optimized the growth of both microorganisms within biofilms in vitro and ex vivo.


Subject(s)
Malassezia , Staphylococcus , Animals , Swine , Biofilms , Reference Standards
10.
Biofouling ; 39(2): 135-144, 2023 02.
Article in English | MEDLINE | ID: mdl-37013808

ABSTRACT

This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of ß-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.


Subject(s)
Burkholderia pseudomallei , Meropenem/pharmacology , Deferiprone/pharmacology , Iron/pharmacology , Iron/metabolism , Biofilms , Anti-Bacterial Agents/pharmacology , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Microbial Sensitivity Tests , Iron Chelating Agents/pharmacology
11.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36841231

ABSTRACT

This study aimed to standardize the use of an ex vivo wound model for the evaluation of compounds with antibiofilm activity. The in vitro susceptibility of Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 to ciprofloxacin and polyhexamethylene biguanide (PHMB) was evaluated in planktonic and biofilm growth. The effects of ciprofloxacin and PHMB on biofilms grown on porcine skin explants were evaluated by colony-forming unit (CFU) counting and confocal microscopy. Minimum inhibitory concentrations (MICs) against S. aureus and P. aeruginosa were, respectively, 0.5 and 0.25 µg mL-1 for ciprofloxacin, and 0.78 and 6.25 µg mL-1 for PHMB. Minimum biofilm eradication concentrations (MBECs) against S. aureus and P. aeruginosa were, respectively, 2 and 8 µg mL-1 for ciprofloxacin, and 12.5 and >25 µg mL-1 for PHMB. Ciprofloxacin reduced (P < 0.05) log CFU counts of the biofilms grown ex vivo by 3 and 0.96 for S. aureus and P. aeruginosa, respectively, at MBEC, and by 0.58 and 8.12 against S. aureus and P. aeruginosa, respectively, at 2xMBEC. PHMB (100 µg/mL) reduced (P < 0.05) log CFU counts by 0.52 for S. aureus and 0.68 log for P. aeruginosa, leading to an overall decrease (P < 0.05) in biofilm biomass. The proposed methodology to evaluate the susceptibility of biofilms grown ex vivo led to reproducible and reliable results.


Subject(s)
Ciprofloxacin , Staphylococcus aureus , Animals , Swine , Ciprofloxacin/pharmacology , Biguanides/pharmacology , Biofilms , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
12.
Antonie Van Leeuwenhoek ; 116(5): 447-462, 2023 May.
Article in English | MEDLINE | ID: mdl-36841923

ABSTRACT

Freshwater cetaceans play a significant role as sentinel animals, providing important data on animal species and aquatic ecosystem health. They also may serve as potential reservoirs of emerging pathogens and host virulence genes in their microbiota. In this study, we evaluated virulence factors produced by Gram-negative bacteria recovered from individuals belonging to two populations of free-ranging Amazon river dolphins (Inia geoffrensis). A total of 132 isolates recovered from the oral cavity, blowhole, genital opening and rectum of 21 river dolphins, 13 from Negro River and 8 from Tapajós River, Brazil, were evaluated for the production of virulence factors, such as biofilms and exoproducts (proteases, hemolysins and siderophores), in planktonic and biofilm forms. In planktonic form, 81.1% (107/132) of the tested bacteria of free-ranging Amazon river dolphins were able to produce virulence factors, with 44/132 (33.4%), 65/132 (49,2%) and 54/132 (40,9%) positive for protease, hemolysin and siderophore production, respectively. Overall, 57/132 (43.2%) of the isolates produced biofilms and, under this form of growth, 66/132 (50%), 88/132 (66.7%) and 80/132 (60.6%) of the isolates were positive for protease, hemolysin and siderophore production. In general, the isolates showed a higher release of exoproducts in biofilm than in planktonic form (P < 0.001). The present findings show that Amazon river dolphins harbor potentially pathogenic bacteria in their microbiota, highlighting the importance of monitoring the micro-organisms from wild animals, as they may emerge as pathogens for humans and other animals.


Subject(s)
Dolphins , Humans , Animals , Virulence Factors/genetics , Ecosystem , Hemolysin Proteins , Siderophores , Gram-Negative Bacteria , Peptide Hydrolases
13.
Braz J Microbiol ; 54(1): 169-177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36480120

ABSTRACT

INTRODUCTION: Psoriasis is a chronic inflammatory disease that affects over 125 million people worldwide. Many studies have shown the importance of the microbiome for psoriasis exacerbation. AIM: Explore the fungal load and species composition of cultivable yeasts on the skin of psoriatic patients (PP) and healthy volunteers living in a tropical area and evaluate the susceptibility to antifungals. METHODOLOGY: A cross-sectional study with 61 participants (35 patients and 26 healthy controls) was performed during August 2018 and May 2019. Clinical data were collected from patient interviewing and/or medical records review. Samples were collected by swabbing in up to five anatomic sites. Suggestive yeast colonies were counted and further identified by phenotypical tests, PCR-REA, and/or MALDI-TOF. Susceptibility of Malassezia spp. and Candida spp. to azoles, terbinafine, and amphotericin B was evaluated by broth microdilution. RESULTS: Nearly 50% of the patients had moderate to severe psoriasis, and plaque-type psoriasis was the most common clinical form. Yeast colonies count was significantly more abundant among PP than healthy controls. Malassezia and Candida were the most abundant genus detected in all participants. Higher MIC values for ketoconazole and terbinafine were observed in Malassezia strains obtained from PP. Approximately 42% of Candida isolates from PP showed resistance to itraconazole in contrast to 12.5% of isolates from healthy controls. MIC values for fluconazole and amphotericin B were significantly different among Candida isolates from PP and healthy individuals. CONCLUSION: This study showed that Malassezia and Candida strains from PP presented higher MIC values to widespread antifungal drugs than healthy individuals.


Subject(s)
Malassezia , Psoriasis , Humans , Antifungal Agents/pharmacology , Amphotericin B , Candida , Terbinafine , Cross-Sectional Studies , Saccharomyces cerevisiae , Fluconazole , Itraconazole , Microbial Sensitivity Tests , Drug Resistance, Fungal
14.
Antibiotics (Basel) ; 11(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36358217

ABSTRACT

Persistent apical periodontitis occurs when the endodontic treatment fails to eradicate the intraradicular infection, and is mainly caused by Gram-positive bacteria and yeasts, such as Enterococcus faecalis and Candida albicans, respectively. Phenothiazines have been described as potential antimicrobials against bacteria and fungi. This study aimed to investigate the antimicrobial potential of promethazine (PMZ) and chlorpromazine (CPZ) against E. faecalis and C. albicans dual-species biofilms. The susceptibility of planktonic cells to phenothiazines, chlorhexidine (CHX) and sodium hypochlorite (NaOCl) was initially analyzed by broth microdilution. Interaction between phenothiazines and CHX was examined by chequerboard assay. The effect of NaOCl, PMZ, CPZ, CHX, PMZ + CHX, and CPZ + CHX on biofilms was investigated by susceptibility assays, biochemical and morphological analyses. Results were evaluated through one-way ANOVA and Tukey's multiple comparison post-test. PMZ, alone or in combination with irrigants, was the most efficient phenothiazine, capable of reducing cell counts, biomass, biovolume, carbohydrate and protein contents of dual-species biofilms. Neither PMZ nor CPZ increased the antimicrobial activity of CHX. Further investigations of the properties of phenothiazines should be performed to encourage their use in endodontic clinical practice.

15.
Biofouling ; 38(8): 778-785, 2022 09.
Article in English | MEDLINE | ID: mdl-36210505

ABSTRACT

Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.


Subject(s)
Antifungal Agents , Trichosporon , Humans , Antifungal Agents/pharmacology , Biofilms , Microbial Sensitivity Tests , Trichosporon/genetics , DNA , Deoxyribonucleases
16.
Braz J Microbiol ; 53(4): 1915-1924, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35933553

ABSTRACT

The human bocavirus (HBoV) is an agent of upper and lower respiratory infections, affecting mainly children under 5 years of age. Community-acquired pneumonia (CAP) is an important public health problem in developing countries, representing one of the main causes of hospitalizations and deaths in children. The aim of this study was to describe the prevalence of HBoV and the clinical and epidemiological characteristics in children diagnosed with CAP. For this purpose, nasopharyngeal aspirates were collected from 545 children aged 0 to 60 months diagnosed with CAP between January 2013 and December 2014 in a reference pediatric hospital in Fortaleza, Ceará, Brazil. The samples were subjected to PCR for detection of HBoV and parainfluenza 4 (PIV4) and indirect immunofluorescence for detection of respiratory syncytial virus (RSV), adenovirus (AdV), influenza A and B (FLU A and FLU B), and parainfluenza 1, 2, and 3 (PIV1, PIV2, PIV3). Clinically, most CAP were non-complicated (487/545; 89.3%); however, 10.7% (58/545) of children were treated in the ICU/resuscitation sector. Among the total samples analyzed, 359 (65.8%) were positive for at least one virus surveyed and 105 (19.2%) samples had two or more viruses. HBoV was detected in 87 samples (15.9%), being the second most prevalent virus. RSV, AdV, FLU A, FLU B, and PIV 1-3 were detected in 150 (27.5%), 45 (8.2%), 30 (5.5%), 3 (0.5%), and 131 (24%) samples, respectively. The age average was 12.1 months in children infected with HBoV, and the most frequent symptoms were dyspnea and cough. In addition, 90.6% of HboV-positive children received antibiotics as empirical treatment. HBoV did not show any circulation pattern; however, it seemed to be more frequent in the first half of the year, totaling 68.9% of the cases. HBoV is a frequent agent of pneumonia in the child population studied.


Subject(s)
Community-Acquired Infections , Human bocavirus , Paramyxoviridae Infections , Parvoviridae Infections , Pneumonia , Respiratory Tract Infections , Child , Humans , Infant , Child, Preschool , Human bocavirus/genetics , Brazil/epidemiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , Respiratory Syncytial Viruses , Parvoviridae Infections/epidemiology
17.
Reprod Domest Anim ; 57(9): 1063-1073, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35696284

ABSTRACT

Pyometra is one of the most common diseases in adult female dogs, characterized by a suppurative bacterial infection of the uterus with accumulation of inflammatory exudate and a variety of local and systemic clinical manifestations. This study aimed to identify the bacteria within the uterine content and vaginal canal of bitches with pyometra and evaluate their antimicrobial susceptibility and production of virulence factors. Uterine and vaginal content were collected with sterile swabs from 30 bitches diagnosed with pyometra. Bacteria were identified and assessed for their antimicrobial susceptibility and production of virulence factors, including biofilms, siderophores, proteases and hemolysins, both in planktonic and biofilm forms. A total of 82 bacterial isolates (35 uterus, 47 vagina), belonging to 21 species, were identified, with Escherichia coli as the most prevalent species (32/82, 39%). As for susceptibility, 39/79 (49.4%) isolates were resistant to one or more drugs, with resistance proportion among Gram-positive bacteria (87.5%) higher (p < .05) than that observed for Gram-negative bacteria (32.7%). Four coagulase-negative Staphylococcus species were resistant to methicillin. Regarding virulence, the isolates had low production of biofilms, siderophores, proteases and hemolysins, suggesting that the occurrence of pyometra might be more associated with host-related factors than bacterial virulence.


Subject(s)
Anti-Infective Agents , Dog Diseases , Pyometra , Animals , Dog Diseases/microbiology , Dogs , Escherichia coli , Female , Hemolysin Proteins , Peptide Hydrolases , Pyometra/veterinary , Siderophores , Virulence Factors
18.
Biofouling ; 38(4): 401-413, 2022 04.
Article in English | MEDLINE | ID: mdl-35655421

ABSTRACT

Enterococcus faecalis is the most important agent of persistent apical periodontitis, and recently, Candida albicans has also been implicated in periapical infections. This study aimed to optimize an in vitro E. faecalis and C. albicans dual-species biofilm protocol for endodontic research. Different physicochemical conditions for biofilm formation were tested. Susceptibility assays to antimicrobials, biochemical composition and an ultra-morphological structure analyses were performed. Reproducible dual-species biofilms were established in BHI medium at 35 °C, for 48 h and in a microaerophilic atmosphere. An increase in biomass and chitin content was detected after vancomycin treatment. Structural analysis revealed that the dual-species biofilm was formed by both microorganisms adhered to the substrate. The proposed protocol could be useful for the study of interkingdom relationships and help to find new strategies against periapical infections.


Subject(s)
Anti-Infective Agents , Enterococcus faecalis , Biofilms , Candida albicans
19.
Rev Iberoam Micol ; 39(1): 21-24, 2022.
Article in English | MEDLINE | ID: mdl-35256257

ABSTRACT

BACKGROUND: The prevalence of pulmonary aspergillosis and the importance of its early diagnosis are recognized. However, non-pulmonary involvement, including the sinuses region, is not frequently reported, and an infection in this area can affect all paranasal sinuses (pansinusopathy), being a rare pathology that affects immunocompromised hosts. Recent studies have highlighted the occurrence of Aspergillus flavus resistant to antifungal therapy. Therefore, a nasal sinus infection by resistant Aspergillus strains in immunocompromised patients may be linked to a high risk of lethality. CASE REPORT: We are reporting a resistant A. flavus infection in an allogeneic hematopoietic stem cell transplant recipient with episodes of febrile neutropenia, and prolonged use of various antibacterial drugs and antifungal prophylaxis. The patient underwent brain magnetic resonance, which showed the presence of pansinusopathy, and presented necrosis in the left nasal region. Direct microscopic examination of a sample taken from the nasal mucosa revealed the presence of septate hyphae and conidiophores resembling those of A. flavus, that species being the identification achieved with MALDI-TOF MS. Antifungigram was performed by microdilution in broth (EUCAST-E.DEF. 9.3.2) and E-test, and resistance to amphotericin B was shown in both tests. The patient died after septic shock and hemorrhage. CONCLUSIONS: Invasive fungal infections due to amphotericin-B resistant A. flavus may lead to the death of the patient due to an ineffective therapeutic management. Therefore, antifungal susceptibility testing are of utmost importance for administering the proper treatment.


Subject(s)
Amphotericin B , Aspergillosis , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus flavus , Humans , Microbial Sensitivity Tests
20.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35303412

ABSTRACT

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Subject(s)
Cryptococcus gattii , Cryptococcus neoformans , Herbicides , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Cryptococcus gattii/metabolism , Cryptococcus neoformans/metabolism , Herbicides/metabolism , Herbicides/pharmacology , Levodopa/metabolism , Levodopa/pharmacology , Melanins/metabolism , Melanins/pharmacology , Microbial Sensitivity Tests , Paraquat/metabolism , Paraquat/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...