Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L256-L275, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29074488

ABSTRACT

Pulmonary vascular remodeling characterized by concentric wall thickening and intraluminal obliteration is a major contributor to the elevated pulmonary vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Here we report that increased hypoxia-inducible factor 2α (HIF-2α) in lung vascular endothelial cells (LVECs) under normoxic conditions is involved in the development of pulmonary hypertension (PH) by inducing endothelial-to-mesenchymal transition (EndMT), which subsequently results in vascular remodeling and occlusive lesions. We observed significant EndMT and markedly increased expression of SNAI, an inducer of EndMT, in LVECs from patients with IPAH and animals with experimental PH compared with normal controls. LVECs isolated from IPAH patients had a higher level of HIF-2α than that from normal subjects, whereas HIF-1α was upregulated in pulmonary arterial smooth muscle cells (PASMCs) from IPAH patients. The increased HIF-2α level, due to downregulated prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase that promotes HIF-2α degradation, was involved in enhanced EndMT and upregulated SNAI1/2 in LVECs from patients with IPAH. Moreover, knockdown of HIF-2α (but not HIF-1α) with siRNA decreases both SNAI1 and SNAI2 expression in IPAH-LVECs. Mice with endothelial cell (EC)-specific knockout (KO) of the PHD2 gene, egln1 (egln1EC-/-), developed severe PH under normoxic conditions, whereas Snai1/2 and EndMT were increased in LVECs of egln1EC-/- mice. EC-specific KO of the HIF-2α gene, hif2a, prevented mice from developing hypoxia-induced PH, whereas EC-specific deletion of the HIF-1α gene, hif1a, or smooth muscle cell (SMC)-specific deletion of hif2a, negligibly affected the development of PH. Also, exposure to hypoxia for 48-72 h increased protein level of HIF-1α in normal human PASMCs and HIF-2α in normal human LVECs. These data indicate that increased HIF-2α in LVECs plays a pathogenic role in the development of severe PH by upregulating SNAI1/2, inducing EndMT, and causing obliterative pulmonary vascular lesions and vascular remodeling.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Hypertension, Pulmonary/etiology , Hypoxia-Inducible Factor-Proline Dioxygenases/physiology , Animals , Cells, Cultured , Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Vascular Remodeling
2.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L309-L325, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27979859

ABSTRACT

Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca2+ concentration ([Ca2+]cyt). A rise in [Ca2+]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca2+]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca2+]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca2+]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca2+]cyt, and the hypo-osmolarity-induced rise in [Ca2+]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca2+]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca2+]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca2+]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca2+ influx and excessive PASMC proliferation in patients with IPAH.


Subject(s)
Calcium Signaling/drug effects , Capsaicin/pharmacology , Familial Primary Pulmonary Hypertension/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/pathology , TRPV Cation Channels/metabolism , Up-Regulation/drug effects , Adult , Capsaicin/analogs & derivatives , Cell Proliferation/drug effects , Chloride Channels/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Diterpenes/pharmacology , Electric Conductivity , Extracellular Space/metabolism , Female , Gene Knockdown Techniques , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Myocytes, Smooth Muscle/drug effects , Osmosis/drug effects , Phosphorylation/drug effects , Potassium Channels/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...