Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 98(11): 4897-909, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24584512

ABSTRACT

For starter culture production, fluidized bed drying is an efficient and cost-effective alternative to the most frequently used freeze drying method. However, fluidized bed drying also poses damaging or lethal stress to bacteria. Therefore, investigation of impact of process variables and conditions on viability of starter cultures produced by fluidized bed drying is of major interest. Viability of bacteria is most frequently assessed by plate counting. While reproductive growth of cells can be characterized by the number of colony-forming units, it cannot provide the number of viable-but-nonculturable cells. However, in starter cultures, these cells still contribute to the fermentation during food production. In this study, flow cytometry was applied to assess viability of Lactobacillus plantarum starter cultures by membrane integrity analysis using SYBR®Green I and propidium iodide staining. The enumeration method established allowed for rapid, precise and sensitive determination of viable cell concentration, and was used to investigate effects of fluidized bed drying and storage on viability of L. plantarum. Drying caused substantial membrane damage on cells, most likely due to dehydration and oxidative stress. Nevertheless, high bacterial survival rates were obtained, and granulates contained in the average 2.7 × 10(9) viable cells/g. Furthermore, increased temperatures reduced viability of bacteria during storage. Differences in results of flow cytometry and plate counting suggested an occurrence of viable-but-nonculturable cells during storage. Overall, flow cytometric viability assessment is highly feasible for rapid routine in-process control in production of L. plantarum starter cultures, produced by fluidized bed drying.


Subject(s)
Flow Cytometry/methods , Food Handling/methods , Food Microbiology , Lactobacillus plantarum/physiology , Microbial Viability , Benzothiazoles , Cell Membrane/physiology , Diamines , Organic Chemicals/metabolism , Propidium/metabolism , Quinolines , Staining and Labeling/methods
2.
Food Microbiol ; 34(2): 406-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23541209

ABSTRACT

A better and regular control of the production chain of fresh fruits and vegetables is necessary, because a contamination of the product by human- and phyto-pathogenic microorganisms may result in high losses during storage and poses a threat to human health. Therefore, detailed knowledge about the occurrence and the diversity of microorganisms within single processing steps is required to allow target-oriented produce safety control. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successfully used to identify bacterial colonies. Bacteria can be identified with high accuracy by comparing them with generated spectra of a reference database. In this study, spinach and wash water samples were taken of the complete process line of a spinach-washing plant. Bacteria in the samples were grown on plate-count, Arcobacter selective, marine and blood agar. In total, 451 colonies were evaluated by MALDI-TOF MS, 16S rRNA gene sequence and phylogenetic analysis. 50% of the detected species belonged to the class of Gammaproteobacteria. Firmicutes were present with 22%. Mostly, the detected species showed 16S rRNA gene sequence dissimilarities larger than 1% to known reference species and, hence, could not be assigned to a distinct species. However, many isolated species belonged to genera which contain pathogenic or opportunistic pathogenic bacteria. In addition, the bacterial diversity on the spinach surface increased after the first washing step indicating a process-borne contamination of the spinach.


Subject(s)
Bacteria/chemistry , Bacteria/isolation & purification , Food Contamination/analysis , Spinacia oleracea/microbiology , Tandem Mass Spectrometry/methods , Bacteria/classification , Bacteria/genetics , Food Handling , Genetic Variation , Phylogeny , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
3.
Adv Biochem Eng Biotechnol ; 121: 1-21, 2010.
Article in English | MEDLINE | ID: mdl-20490972

ABSTRACT

In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.


Subject(s)
Aspergillus niger/physiology , Cytological Techniques/methods , Fungal Proteins/physiology , Mechanotransduction, Cellular/physiology , Metabolic Engineering/methods , Models, Biological , Cell Proliferation , Cell Size , Computer Simulation
4.
Appl Environ Microbiol ; 74(1): 294-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17981940

ABSTRACT

In this study, the feasibility of fluorescence lifetime imaging (FLIM) for measurement of RNA:DNA ratios in microorganisms was assessed. The fluorescence lifetime of a nucleic acid-specific probe (SYTO 13) was used to directly measure the RNA:DNA ratio inside living bacterial cells. In vitro, SYTO 13 showed shorter fluorescence lifetimes in DNA solutions than in RNA solutions. Growth experiments with bacterial monocultures were performed in liquid media. The results demonstrated the suitability of SYTO 13 for measuring the growth-phase-dependent RNA:DNA ratio in Escherichia coli cells. The fluorescence lifetime of SYTO 13 reflected the known changes of the RNA:DNA ratio in microbial cells during different growth phases. As a result, the growth rate of E. coli cells strongly correlated with the fluorescence lifetime. Finally, the fluorescence lifetimes of SYTO 13 in slow- and fast-growing biofilms were compared. For this purpose, biofilms developed from activated sludge were grown as autotrophic and heterotrophic communities. The FLIM data clearly showed a longer fluorescence lifetime for the fast-growing heterotrophic biofilms and a shorter fluorescence lifetime for the slow-growing autotrophic biofilms. Furthermore, starved biofilms showed shorter lifetimes than biofilms supplied with glucose, indicating a lower RNA:DNA ratio in starved biofilms. It is suggested that FLIM in combination with SYTO 13 represents a useful tool for the in situ differentiation of active and inactive bacteria. The technique does not require radioactive chemicals and may be applied to a broad range of sample types, including suspended and immobilized microorganisms.


Subject(s)
Bacteria/growth & development , In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , Bacteria/chemistry , Biofilms/growth & development , DNA, Bacterial/analysis , Organic Chemicals/metabolism , RNA, Bacterial/analysis , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...