Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Open Res Eur ; 4: 140, 2024.
Article in English | MEDLINE | ID: mdl-39139813

ABSTRACT

Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.


Observations of our Sun and other stars at wavelengths of around one millimeter, i.e. in the range between infrared and radio waves, present a valuable complementary perspective. Despite significant technological advancements, certain critical aspects necessitate diagnostic capabilities not offered by current observatories. The proposed Atacama Large Aperture Submillimeter Telescope (AtLAST), featuring a 50-meter aperture and slated for construction at a high altitude in Chile's Atacama desert, promises to address these observational needs. Equipped with novel detectors that would cover a wide frequency range, AtLAST could unlock a plethora of scientific studies contributing to a better understanding of our host star. Simultaneous observations over a broad frequency range at rapid succession would enable the imaging of different layers of the Sun, thus elucidating the three-dimensional thermal and magnetic structure of the solar atmosphere and providing important clues for many long-standing central questions such as how the outermost layers of the Sun are heated to very high temperatures, the nature of large-scale structures like prominences, and how flares and coronal mass ejections, i.e. enormous eruptions, are produced. The latter is of particular interest to modern society due to the potentially devastating impact on the technological infrastructure we depend on today. Another unique possibility would be to study the Sun's long-term evolution in this wavelength range, which would yield important insights into its activity cycle. Moreover, the Sun serves as a fundamental reference for other stars as, due to its proximity, it is the only star that can be investigated in such detail. The results for the Sun would therefore have direct implications for understanding other stars and their impact on exoplanets. This article outlines the key scientific objectives and technical requirements for solar observations with AtLAST.

2.
Science ; 371(6535): 1265-1269, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33737489

ABSTRACT

Unidentified infrared emission bands are ubiquitous in many astronomical sources. These bands are widely, if not unanimously, attributed to collective emissions from polycyclic aromatic hydrocarbon (PAH) molecules, yet no single species of this class has been identified in space. Using spectral matched filtering of radio data from the Green Bank Telescope, we detected two nitrile-group-functionalized PAHs, 1- and 2-cyanonaphthalene, in the interstellar medium. Both bicyclic ring molecules were observed in the TMC-1 molecular cloud. In this paper, we discuss potential in situ gas-phase PAH formation pathways from smaller organic precursor molecules.

3.
Astron Astrophys ; 6062017 Oct.
Article in English | MEDLINE | ID: mdl-29151608

ABSTRACT

The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the [Formula: see text] fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70 000 - 100 000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

4.
Sci Adv ; 3(7): e1700022, 2017 07.
Article in English | MEDLINE | ID: mdl-28782019

ABSTRACT

Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with >4σ confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of ≳200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 × 1013 to 1.4 × 1014 cm-2. The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form ~107 cell membranes/cm3 in Titan's sea Ligeia Mare.

5.
Proc Natl Acad Sci U S A ; 108(2): 452-7, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21187430

ABSTRACT

Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block--the aromatic benzene molecule--has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C(6)H(6)) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C(2)H + H(2)CCHCHCH(2) → C(6)H(6) + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.


Subject(s)
Astronomy , Benzene/chemistry , Chemistry , Hydrogen/chemistry , Models, Statistical , Polycyclic Aromatic Hydrocarbons/chemistry
6.
Faraday Discuss ; 133: 403-13; discussion 427-52, 2006.
Article in English | MEDLINE | ID: mdl-17191460

ABSTRACT

The carriers of the diffuse interstellar band spectrum represent an important baryonic component of the interstellar medium (ISM) and it is expected that their identification will contribute significantly to the understanding of the chemistry and physics of interstellar clouds. It is widely held that the carriers are linked to the presence of dust grains on account of the good correlation of their strengths with interstellar reddening, so they offer an important potential route to improving our understanding of the composition and chemistry of grains and grain surfaces. In addition to the challenge of making the spectral assignments, an important current question concerns the spatial distribution and physical state of interstellar material, with recent observational atomic and molecular line absorption studies suggesting that diffuse clouds are more 'clumpy' than previously thought. We describe here high signal-to-noise optical observations made at the Anglo-Australian Telescope using UCLES that were undertaken to investigate the spatial distribution of diffuse band carriers. We describe the first detection of 'small-scale-structure' in the diffuse band carrier distribution in the ISM, and comment on the possibilities that these data hold for contributing to the solution of the diffuse band problem and our understanding of the nature of small-scale-structure in the diffuse ISM.

SELECTION OF CITATIONS
SEARCH DETAIL