Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Front Oncol ; 13: 1135456, 2023.
Article in English | MEDLINE | ID: mdl-37284199

ABSTRACT

Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.

3.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36889811

ABSTRACT

BACKGROUND: The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS: We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS: In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS: These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.


Subject(s)
Mucin-4 , Neoplasms , Mice , Animals , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Down-Regulation , Mucin-4/genetics , Mucin-4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptor, ErbB-2 , Cell Line, Tumor , Immunosuppression Therapy , Neoplasms/drug therapy
4.
Methods Mol Biol ; 2619: 39-52, 2023.
Article in English | MEDLINE | ID: mdl-36662460

ABSTRACT

Hyaluronan is a non-sulfated glycosaminoglycan synthesized on the plasma membrane of almost all mammalian cells, which can interact with different proteoglycans of the extracellular matrix. Aggrecan, versican, neurocan, and brevican are proteoglycans whose structures present a specific protein domain called "link module," which allows hyaluronan binding. Therefore, they can be helpful for assays that detect hyaluronan. For example, ELISA-like methods developed to measure hyaluronan amounts in solution are based on specific interactions between this molecule and the link module present in aggrecan or other hyaluronan-binding proteins (hyaladherins).


Subject(s)
Chondroitin Sulfate Proteoglycans , Hyaluronic Acid , Animals , Aggrecans , Hyaluronic Acid/chemistry , Chondroitin Sulfate Proteoglycans/metabolism , Lectins, C-Type , Extracellular Matrix Proteins/metabolism , Versicans , Hyaluronan Receptors , Enzyme-Linked Immunosorbent Assay , Mammals/metabolism
5.
Cell Death Dis ; 13(5): 447, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534460

ABSTRACT

Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Cell Nucleus/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/pathology
6.
Oncogene ; 39(39): 6245-6262, 2020 09.
Article in English | MEDLINE | ID: mdl-32843720

ABSTRACT

Triple negative breast cancer (TNBC) refers to tumors that do not express clinically significant levels of estrogen and progesterone receptors, and lack membrane overexpression or gene amplification of ErbB-2/HER2, a receptor tyrosine kinase. Transcriptome and proteome heterogeneity of TNBC poses a major challenge to precision medicine. Clinical biomarkers and targeted therapies for this disease remain elusive, so chemotherapy has been the standard of care for early and metastatic TNBC. Our present findings placed ErbB-2 in an unanticipated scenario: the nucleus of TNBC (NErbB-2). Our study on ErbB-2 alternative splicing events, using a PCR-sequencing approach combined with an RNA interference strategy, revealed that TNBC cells express either the canonical (wild-type) ErbB-2, encoded by transcript variant 1, or the non-canonical ErbB-2 isoform c, encoded by alternative variant 3 (RefSeq), or both. These ErbB-2 isoforms function in the nucleus as transcription factors. Evicting both from the nucleus or silencing isoform c only, blocks TN cell and tumor growth. This reveals not only NErbB-2 canonical and alternative isoforms role as targets of therapy in TNBC, but also isoform c dominant oncogenic potential. Furthermore, we validated our findings in the clinic and observed that NErbB-2 correlates with poor prognosis in primary TN tumors, disclosing NErbB-2 as a novel biomarker for TNBC. Our discoveries challenge the present scenario of drug development for personalized BC medicine that focuses on wild-type RefSeq proteins, which conserve the canonical domains and are located in their classical cellular compartments.


Subject(s)
Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Nucleus/enzymology , Cell Nucleus/metabolism , Cell Proliferation/physiology , Female , Humans , Mitogen-Activated Protein Kinase 7/biosynthesis , Mitogen-Activated Protein Kinase 7/genetics , Paraffin Embedding , Protein Isoforms , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/genetics , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
7.
Horm Cancer ; 11(5-6): 218-239, 2020 10.
Article in English | MEDLINE | ID: mdl-32632815

ABSTRACT

The hormone receptor-positive (estrogen and/or progesterone receptor (PR)-positive) and HER2-negative breast cancer (BC) subtype is a biologically heterogeneous entity that includes luminal A-like (LumA-like) and luminal B-like (LumB-like) subtypes. Decreased PR levels is a distinctive biological feature of LumB-like tumors. These tumors also show reduced sensitivity to endocrine therapies and poorer prognosis than LumA-like tumors. Identification of biomarkers to accurately predict disease relapse in these subtypes is crucial in order to select effective therapies. We identified the tumor suppressor PDCD4 (programmed cell death 4), located in the nucleus (NPDCD4), as an independent prognostic factor of good clinical outcome in LumA-like and LumB-like subtypes. NPDCD4-positive LumB-like tumors presented overall and disease-free survival rates comparable to those of NPDCD4-positive LumA-like tumors, indicating that NPDCD4 improves the outcome of LumB-like patients. In contrast, NPDCD4 loss increased the risk of disease recurrence and death in LumB-like compared with LumA-like tumors. This, along with our results showing that LumB-like tumors present lower NPDCD4 positivity than LumA-like tumors, suggests that NPDCD4 loss contributes to endocrine therapy resistance in LumB-like BCs. We also revealed that PR induces PDCD4 transcription in LumB-like BC, providing a mechanistic explanation to the low PDCD4 levels in LumB-like BCs lacking PR. Finally, PDCD4 silencing enhanced BC cell survival in a patient-derived explant model of LumB-like disease. Our discoveries highlight NPDCD4 as a novel biomarker in LumA- and LumB-like subtypes, which could be included in the panel of immunohistochemical markers used in the clinic to accurately predict the prognosis of LumB-like tumors.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/genetics , RNA-Binding Proteins/metabolism , Breast Neoplasms/pathology , Female , Humans , Prognosis
8.
Horm Cancer ; 10(2-3): 64-70, 2019 06.
Article in English | MEDLINE | ID: mdl-30656558

ABSTRACT

Membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbB family of receptor tyrosine kinases, occurs in 15-20% of breast cancers (BC) and constitutes a therapeutic target in this BC subtype (ErbB-2-positive). Although MErbB-2-targeted therapies have significantly improved patients' clinical outcome, resistance to available drugs is still a major issue in the clinic. Lack of accurate biomarkers for predicting responses to anti-ErbB-2 drugs at the time of diagnosis is also an important unresolved issue. Hence, a better understanding of the ErbB-2 signaling pathway constitutes a critical task in the battle against BC. In its canonical mechanism of action, MErbB-2 activates downstream signaling pathways, which transduce its proliferative effects in BC. The dogma of ErbB-2 mechanism of action has been challenged by the demonstration that MErbB-2 migrates to the nucleus, where it acts as a transcriptional regulator. Accumulating findings demonstrate that nuclear ErbB-2 (NErbB-2) is involved in BC growth and metastasis. Emerging evidence also reveal a role of NErbB-2 in the response to available anti-MErbB-2 agents. Here, we will review NErbB-2 function in BC and will particularly discuss the role of NErbB-2 as a novel target for therapy in ErbB-2-positive BC.


Subject(s)
Breast Neoplasms/metabolism , Molecular Targeted Therapy , Receptor, ErbB-2/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis , Biomarkers , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Cell Nucleus/metabolism , Cell Survival , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Metastasis , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Treatment Outcome
9.
BMC Cancer ; 17(1): 895, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29281999

ABSTRACT

BACKGROUND: Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC. METHODS: We retrospectively studied 86 HER2-positive breast cancer patients treated with trastuzumab and chemotherapy in the adjuvant setting. We explored the association of the IMPC component with clinicopathological parameters at diagnosis and its prognostic value. We compared MUC4 expression in IMPC with respect to other histological breast cancer subtypes by immunohistochemistry. RESULTS: IMPC, either as a pure entity or associated with invasive ductal carcinoma (IDC), was present in 18.6% of HER2-positive cases. It was positively correlated with estrogen receptor expression and tumor size and inversely correlated with patient's age. Disease-free survival was significantly lower in patients with IMPC (hazard ratio = 2.6; 95%, confidence interval 1.1-6.1, P = 0.0340). MUC4, a glycoprotein associated with metastasis, was strongly expressed in all IMPC cases tested. IMPC appeared as the histological breast cancer subtype with the highest MUC4 expression compared to IDC, lobular and mucinous carcinoma. CONCLUSION: In HER2-positive breast cancer, the presence of IMPC should be carefully examined. As it is often not informed, because it is relatively difficult to identify or altogether overlooked, we propose MUC4 expression as a useful biomarker to highlight IMPC presence. Patients with MUC4-positive tumors with IMPC component should be more frequently monitored and/or receive additional therapies.


Subject(s)
Breast Neoplasms/mortality , Carcinoma, Ductal, Breast/mortality , Carcinoma, Papillary/mortality , Mucin-4/metabolism , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Adult , Aged , Antineoplastic Agents, Immunological , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Case-Control Studies , Chemotherapy, Adjuvant , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Invasiveness , Prognosis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Retrospective Studies , Survival Rate
10.
Prensa méd. argent ; 103(6): 357-364, 20170000. fig
Article in Spanish | LILACS, BINACIS | ID: biblio-1378079

ABSTRACT

Aproximadamente 15-20% de los cánceres de mama (CM) presentan sobre- expresión en la membrana citoplasmática de ErbB-2 (MErbB-2), un miembro de la familia ErbBs de receptores con actividad de tirosina quinasa, o bien presentan amplificación del gen. Antes del desarrollo de terapias dirigidas contra el MErbB-2, este subtipo de CM, denominado ErbB-2-positivo, estaba asociado con un aumento en el potencial metastásico del tumor y un mal pronóstico. Estas terapias han aumentado significativamente la sobrevida global y el porcentaje de enfermos curados. Sin embargo, la resistencia a las terapias disponibles actualmente es todavía un importante problema en la clínica. Actuando por su mecanismo clásico, el MErbB-2 activa cascadas de señalización que transducen sus efectos en el cáncer de mama. La presencia del ErbB-2 en el núcleo fue descubierta hace más de veinte años. Evidencias experimentales proporcionadas por varios grupos de investigación, incluyendo el nuestro, revelaron una función no canónica del ErbB-2 en el núcleo celular donde actúa como un regulador de transcripción. Nuestros hallazgos demostraron que el ErbB-2 nuclear estimula el crecimiento del CM, el desarrollo de metástasis y la resistencia a las terapias utilizadas actualmente


Membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbBs family of receptor tyrosine kinases, or ErbB-2 gene amplification, occurs in 15-20% of breast cancers (BC). Until the development of MErbB-2-targeted therapies, this BC subtype, called ErbB-2-positive, was associated with increased metastatic potential and poor prognosis. Although the overall survival and cure rates have improved significantly with such therapies, resistance to available drugs is still a major clinical issue. In its classical mechanism, MErbB-2 activates downstream signal cascades, which transduce its effects in BC. The fact that ErbB-2 is also present at the nucleus of BC cells was discovered over twenty years ago. Also, compelling evidence revealed a non-canonical function of nuclear ErbB-2 as a transcriptional regulator. Since deeper understanding of nuclear ErbB-2 actions would be critical to disclose its role as a biomarker and a target of therapy in BC, we will here review its function in BC, focusing on its role in growth, metastatic spreading, and response to currently available MErbB-2 positive BC therapies.


Subject(s)
Humans , Breast Neoplasms/therapy , Cell Nucleus , Receptor, ErbB-2 , Genes, erbB-2
11.
Endocr Relat Cancer ; 23(12): T243-T257, 2016 12.
Article in English | MEDLINE | ID: mdl-27765799

ABSTRACT

Approximately 15-20% of breast cancers (BC) show either membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbBs family of receptor tyrosine kinases, or ERBB2 gene amplification. Until the development of MErbB-2-targeted therapies, this BC subtype, called ErbB-2-positive, was associated with increased metastatic potential and poor prognosis. Although these therapies have significantly improved overall survival and cure rates, resistance to available drugs is still a major clinical issue. In its classical mechanism, MErbB-2 activates downstream signaling cascades, which transduce its effects in BC. The fact that ErbB-2 is also present in the nucleus of BC cells was discovered over twenty years ago. Also, compelling evidence revealed a non-canonical function of nuclear ErbB-2 as a transcriptional regulator. As a deeper understanding of nuclear ErbB-2 actions would be crucial to the disclosure of its role as a biomarker and a target of therapy in BC, we will here review its function in BC, in particular, its role in growth, metastatic spreading and response to currently available MErbB-2-positive BC therapies.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Receptor, ErbB-2/physiology , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Signal Transduction/genetics
12.
Mol Endocrinol ; 29(10): 1468-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26340407

ABSTRACT

Accumulated findings have demonstrated the presence of bidirectional interactions between progesterone receptor (PR) and the ErbB family of receptor tyrosine kinases signaling pathways in breast cancer. We previously revealed signal transducer and activator of transcription 3 (Stat3) as a nodal convergence point between said signaling pathways proving that Stat3 is activated by one of the ErbBs' ligands, heregulin (HRG)ß1 via ErbB2 and through the co-option of PR as a signaling molecule. Here, we found that HRGß1 induced Stat3 recruitment to the promoters of the progestin-regulated cell cycle modulators Bcl-XL and p21(CIP1) and also stimulated Stat3 binding to the mouse mammary tumor virus promoter, which carries consensus progesterone response elements. Interestingly, HRGß1-activated Stat3 displayed differential functions on PR activity depending on the promoter bound. Indeed, Stat3 was required for PR binding in bcl-X, p21(CIP1), and c-myc promoters while exerting a PR coactivator function on the mouse mammary tumor virus promoter. Stat3 also proved to be necessary for HRGß1-induced in vivo tumor growth. Our results endow Stat3 a novel function as a coregulator of HRGß1-activated PR to promote breast cancer growth. These findings underscore the importance of understanding the complex interactions between PR and other regulatory factors, such as Stat3, that contribute to determine the context-dependent transcriptional actions of PR.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neuregulin-1/pharmacology , Receptors, Progesterone/genetics , STAT3 Transcription Factor/metabolism , Transcriptional Activation/genetics , Animals , Base Sequence , Binding Sites , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Mammary Tumor Virus, Mouse/genetics , Mice, Inbred BALB C , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding/drug effects , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptional Activation/drug effects , bcl-X Protein/genetics , bcl-X Protein/metabolism
13.
Inflamm Res ; 61(12): 1309-17, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22842766

ABSTRACT

OBJECTIVE: To analyze the effect of corticosteroid administration on the concentration of hyaluronan (HA) in bronchoalveolar lavage (BAL) in a murine model of eosinophilic airway inflammation and to study the mechanisms involved. MATERIALS AND METHODS: Untreated-mice or mice treated with 1 µg/g/day betamethasone (Bm) or 0.25 µg/g/day(-1) budesonide (Bd) were sensitized and challenged with Dermatophagoides pteronyssinus (Dp) or saline (control group). The concentration of HA in BAL was determined by ELISA. In vitro migration assays were performed using a Boyden chamber and the expression of HA synthases (HAS) was analyzed by RT-PCR. RESULTS: We found a significant increase (P < 0.01) in the levels of HA in BAL from Dp-treated mice that was prevented by Bm or Bd. Corticosteroids also inhibited the increase in HAS expression, and the phosphorylation of Akt and ERK in the lungs of challenged mice. Finally, we found that low molecular weight HA induces the chemotaxis of BAL cells in vitro through a mechanism mediated by CD44. CONCLUSION: We conclude that corticosteroids prevent the increase in HA in BAL from Dp-challenged mice. This effect is associated with reduced expression of HAS and reduced phosphorylation of Akt and ERK in the lungs of challenged mice.


Subject(s)
Betamethasone/pharmacology , Budesonide/pharmacology , Eosinophilia/immunology , Glucocorticoids/pharmacology , Hyaluronic Acid/immunology , Pneumonia/immunology , Allergens , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, Dermatophagoides , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/immunology , Female , Glucuronosyltransferase/genetics , Hyaluronan Synthases , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-akt/immunology
14.
Immunobiology ; 217(9): 842-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22304941

ABSTRACT

Hyaluronan (HA), a component of the extracellular matrix surrounding tumors, modulates tumor progression and the immune response. Dendritic cells (DC) may tolerize or stimulate immunity against cancer. In this report, we study the association between tumor progression, HA levels and DC activation in a lymphoma model. Mice injected with the cells with highest invasive capacity (LBR-) presented increased HA in serum and lymph nodes, and decreased DC activation in infiltrated lymph nodes and liver. These findings could be related to lack of an effective antitumor immune response and suggest that serum HA levels could have a prognostic value in hematological malignancies.


Subject(s)
Dendritic Cells/immunology , Hyaluronic Acid/metabolism , Lymphoma/immunology , Lymphoma/metabolism , Animals , Cell Line, Tumor , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hyaluronic Acid/blood , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Lymphoma/pathology , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness
15.
Leuk Res ; 34(11): 1525-32, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20299090

ABSTRACT

Hyaluronan (HA) modulates multidrug resistance (MDR) as well as cell migration. Tiam1 is involved in cytoskeleton reorganization during tumor invasion. In this report we show the relationship among HA, Tiam1, migration and MDR in murine lymphoma cell lines. We observed that MDR cells presented higher migratory capacity towards HA in vitro as well as higher constitutive active Tiam1 expression than the sensitive cell line. Besides, HA treatment induced migration towards HA of MDR cell lines through Tiam1 activation by a PI3K-dependent mechanism, showing that disruption of HA signaling would be useful in treatment of MDR hematological malignancies.


Subject(s)
Cell Movement/drug effects , Drug Resistance, Multiple , Guanine Nucleotide Exchange Factors/metabolism , Hyaluronic Acid/pharmacology , Lymphoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line, Tumor , Lymphoma/pathology , Mice , Signal Transduction , T-Lymphoma Invasion and Metastasis-inducing Protein 1
16.
Leuk Res ; 33(2): 288-96, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18640717

ABSTRACT

Upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been described in some tumors related to multidrug resistance (MDR). The aim of this work was to analyze the relationship between PI3K/Akt, MDR and NF-kappaB in murine lymphoma cell lines resistant to vincristine (LBR-V160) and doxorubicin (LBR-D160) as well as in the sensitive line (LBR-). PI3K/Akt activity, analyzed by phosphatidylinositol trisphosphate production and phosphorylated Akt (p-Akt) expression, was higher in the resistant cell lines than in the sensitive one and inhibition with wortmannin or LY294002 improved apoptosis in the resistant cell lines. Vincristine but not doxorubicin increased p-Akt expression whereas co-treatment with PI3K inhibitors and vincristine increased apoptosis in the three cell lines. Wortmannin and LY294002 inhibited P-glycoprotein (Pgp) function and also increased NF-kappaB activity. We concluded that the PI3K/Akt pathway is involved in MDR in lymphoma cell lines and PI3K/Akt inhibition correlates down-regulation of NF-kappaB activity and inhibition Pgp function.


Subject(s)
Drug Resistance, Multiple/drug effects , Lymphoma/metabolism , NF-kappa B/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Animals , Cell Line, Tumor , Down-Regulation , Doxorubicin/pharmacology , Lymphoma/pathology , Mice , Vincristine/pharmacology
17.
J Mol Med (Berl) ; 86(9): 999-1011, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18575833

ABSTRACT

Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.


Subject(s)
Dendritic Cells/physiology , Embryo Implantation/physiology , Placentation/physiology , Reproduction/physiology , Animals , Biomarkers/metabolism , CD11c Antigen/metabolism , Dendritic Cells/cytology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Placenta/abnormalities , Placenta/cytology , Placenta/metabolism , Pregnancy , Progesterone/blood
18.
J Mol Med (Berl) ; 86(7): 837-52, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18506412

ABSTRACT

A complex regulation of innate and adaptive immune responses at the maternal fetal interface promotes tolerance of trophoblast cells carrying paternally derived antigens. Such regulatory functions involve uterine dendritic cells (uDC) and natural killer (uNK) cells. The existence of a NK and DC "cross talk" has been revealed in various experimental settings; its biological significance ranging from cooperative stimulation to cell lysis. Little is known about the presence or role of NK and DC cross talk at the maternal fetal interface. The present study shows that mouse NK and DC interactions are subject to modulation by trophoblast cells in vitro. This interaction promotes a tolerogenic microenvironment characterized by downregulation of the expression of activation markers on uNK cells and uDC and dominance of Th2 cytokines. NK and DC interactions would also influence uterine cell proliferation and this process would be strongly modulated by trophoblast-derived signals. Indeed; while low proliferation rates were observed upon regular coculture allowing direct contact between uterine cells and trophoblasts, incubation in a transwell culture system markedly increased uterine cell proliferation suggesting that soluble factors are key mediators in the molecular "dialog" between the mother and the conceptus during the establishment of mouse pregnancy. Our data further reveal that the regulatory functions of trophoblast cells associated with tolerance induction are impaired in high abortion murine matings. Interestingly, we observed that secretion of interleukin-12p70 by uDC is dramatically abrogated in the presence of uNK cells. Taken together, our results provide the first evidence that a delicate balance of interactions involving NK cells, DC, and trophoblasts at the mouse maternal fetal interface supports a successful pregnancy outcome.


Subject(s)
Cell Communication , Dendritic Cells/immunology , Killer Cells, Natural/immunology , Pregnancy/immunology , Animals , Cell Proliferation , Coculture Techniques , Female , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-12/biosynthesis , Interleukin-12/immunology , Mice , Trophoblasts/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology
19.
Int J Cancer ; 122(5): 1012-8, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-17985348

ABSTRACT

Multidrug resistance (MDR) is one of the main reasons for failure of cancer therapy. It may be mediated by overexpression of ATP-dependent efflux pumps or by alterations in survival or apoptotic pathways. Fragments generated by enzymatic degradation of hyaluronan (oHA) were able to modulate growth and cell survival and sensitize MDR breast cancer cells to cytotoxic drugs. In this work the relationship between oHA and MDR in lymphoid malignancies was analyzed using murine lymphoma cell lines resistant to doxorubicin (LBR-D160) or vincristine (LBR-V160) and a sensitive line (LBR-). After oHA treatment, higher apoptosis levels were observed in the resistant cell lines than in the sensitive one. Besides, oHA sensitized LBR-D160 and LBR-V160 to vincristine showing increased apoptosis induction when used in combination with vincristine. Native hyaluronan failed to increase apoptosis levels. As different survival factors could be modulated by hyaluronan, we investigated the PI3K/Akt pathway through PIP3 production and phosphorylated Akt (p-Akt) and survivin expression was also evaluated. Our results showed that oHA decreased p-Akt in the 3 cell lines while anti-CD44 treatment abolished this effect. Besides, survivin was downregulated only in LBR-V160 by oHA. When Pgp function was evaluated, we observed that oHA were able to inhibit Pgp efflux in murine and human resistant cell lines in a CD44-dependent way. In summary, we report for the first time that oHA per se modulate MDR in lymphoma cells by decreasing p-Akt as well as Pgp activity, thus suggesting that oHA could be useful in combination with classical chemotherapy in MDR hematological malignancies.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm/physiology , Hyaluronic Acid/pharmacology , Lymphoma/metabolism , Signal Transduction/drug effects , Vincristine/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Caspase 3/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Mice , Oligosaccharides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
20.
Nat Med ; 13(12): 1450-7, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18026113

ABSTRACT

A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)-secreting regulatory T cells in vivo. Accordingly, Gal-1's protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies.


Subject(s)
Galectin 1/physiology , Gene Expression Regulation, Developmental , Histocompatibility, Maternal-Fetal , Immune Tolerance , Animals , CD4-Positive T-Lymphocytes/metabolism , Female , Galectin 1/genetics , Interleukin-2 Receptor alpha Subunit/biosynthesis , Mice , Mice, Transgenic , Polysaccharides/chemistry , Pregnancy , Pregnancy, Animal , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...