Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5285, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902266

ABSTRACT

Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.


Subject(s)
Bacillus subtilis , Carbon , Citric Acid Cycle , Isocitrate Dehydrogenase , Ketoglutaric Acids , Malate Dehydrogenase , Nitrogen , Nitrogen/metabolism , Carbon/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Ketoglutaric Acids/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ammonium Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...