Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 48(7): e2020GL091327, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-34219837

ABSTRACT

We present a re-examination of mass spectral data obtained from the Pioneer Venus Large Probe Neutral Mass Spectrometer. Our interpretations of differing trace chemical species are suggestive of redox disequilibria in Venus' middle clouds. Assignments to the data (at 51.3 km) include phosphine, hydrogen sulfide, nitrous acid, nitric acid, carbon monoxide, hydrochloric acid, hydrogen cyanide, ethane, and potentially ammonia, chlorous acid, and several tentative PxOy species. All parent ions were predicated upon assignment of corresponding fragmentation products, isotopologues, and atomic species. The data reveal parent ions at varying oxidation states, implying the presence of reducing power in the clouds, and illuminating the potential for chemistries yet to be discovered. When considering the hypothetical habitability of Venus' clouds, the assignments reveal a potential signature of anaerobic phosphorus metabolism (phosphine), an electron donor for anoxygenic photosynthesis (nitrite), and major constituents of the nitrogen cycle (nitrate, nitrite, ammonia, and N2).

2.
Astrobiology ; 21(10): 1186-1205, 2021 10.
Article in English | MEDLINE | ID: mdl-34255549

ABSTRACT

The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.


Subject(s)
Jupiter , Venus , Ecosystem , Exobiology , Extraterrestrial Environment
3.
Plant Direct ; 3(8): e00159, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31468026

ABSTRACT

Nutrient remobilization during leaf senescence nourishes the growing plant. Understanding the regulation of this process is essential for reducing our dependence on nitrogen fertilizers and increasing agricultural sustainability. Our laboratory is interested in chromatin changes that accompany the transition to leaf senescence. Previously, darker green leaves were reported for Arabidopsis thaliana hac1 mutants, defective in a gene encoding a histone acetyltransferase in the CREB-binding protein family. Here, we show that two Arabidopsis hac1 alleles display delayed age-related developmental senescence, but have normal dark-induced senescence. Using a combination of ChIP-seq for H3K9ac and RNA-seq for gene expression, we identified 43 potential HAC1 targets during age-related developmental senescence. Genetic analysis demonstrated that one of these potential targets, ERF022, is a positive regulator of leaf senescence. ERF022 is regulated additively by HAC1 and MED25, suggesting MED25 may recruit HAC1 to the ERF022 promoter to increase its expression in older leaves.

SELECTION OF CITATIONS
SEARCH DETAIL
...