Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(2): e0212693, 2019.
Article in English | MEDLINE | ID: mdl-30794644

ABSTRACT

BACKGROUND: Aedes aegypti mosquitoes are vectors of a variety of emerging viral pathogens, including yellow fever, dengue, chikungunya, and Zika virus. This species has established endemic populations in all cities across southern New Mexico sampled to date. Presently, control of Aedes-borne viruses relies on deployment of insecticides to suppress mosquito populations, but the evolution of insecticide resistance threatens the success of vector control programs. While insecticide resistance is quite common in Ae. aegypti field populations across much of the U.S., the resistance status of this species in populations from New Mexico has not previously been assessed. RESULTS: First, we collected information on pesticide use in cities in southern New Mexico and found that the most commonly used active ingredients were pyrethroids. The use of insecticides with the same mode-of-action over multiple years is likely to promote the evolution of resistance. To determine if there was evidence of resistance in some cities in southern New Mexico, we collected Ae. aegypti from the same cities and established laboratory strains to assess resistance to pyrethroid insecticides and, for a subset of populations, to organophosphate insecticides. F2 or F4 generation mosquitoes were assessed for insecticide resistance using bottle test bioassays. The majority of the populations from New Mexico that we analyzed were resistant to the pyrethroids permethrin and deltamethrin. A notable exception to this trend were mosquitoes from Alamogordo, a city that did not report using pyrethroid insecticides for vector control. We screened individuals from each population for known knock down resistance (kdr) mutations via PCR and found a strong association between the presences of the F1534C kdr mutation in the para gene of Ae. aegypti (homologue to F1534C in Musca domestica L.) and pyrethroid resistance. CONCLUSION: High-level pyrethroid resistance is common in Ae. aegypti from New Mexico and geographic variation in such resistance is likely associated with variation in usage of pyrethroids for vector control. Resistance monitoring and management is recommended in light of the potential for arbovirus outbreaks in this state. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.


Subject(s)
Aedes/genetics , Drug Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Animals , Drug Resistance/drug effects , New Mexico
2.
J Insect Sci ; 18(6)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30383264

ABSTRACT

Sterile insect technique (SIT) is a promising, environmentally friendly alternative to the use of pesticides for insect pest control. However, implementing SIT with Aedes aegypti (Linnaeus) mosquitoes presents unique challenges. For example, during transport from the rearing facility to the release site and during the actual release in the field, damage to male mosquitoes should be minimized to preserve their reproductive competitiveness. The short flight range of male Ae. aegypti requires elaborate release strategies such as release via Unmanned Aircraft Systems, more commonly referred to as drones. Two key parameters during transport and release are storage temperature and compaction rate. We performed a set of laboratory experiments to identify the optimal temperatures and compaction rates for storage and transport of male Ae. aegypti. We then conducted shipping experiments to test our laboratory-derived results in a 'real-life' setting. The laboratory results indicate that male Ae. aegypti can survive at a broad range of storage temperatures ranging from 7 to 28°C, but storage time should not exceed 24 h. Male survival was high at all compaction rates we tested with a low at 40 males/cm3. Interestingly, results from our 'real-life' shipping experiment showed that high compaction rates were beneficial to survival. This study advances key understudied aspects of the practicalities of moving lab-reared insects into the field and lies the foundation for further studies on the effect of transport conditions on male reproductive fitness.


Subject(s)
Aedes/physiology , Insect Control/methods , Transportation , Animals , Male , Survival Analysis , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...