Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 1320, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513809

ABSTRACT

Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.


Subject(s)
Genome-Wide Association Study , Genome , Horses/genetics , Animals , Phenotype , Genomics , Sequence Analysis, DNA
2.
Sci Rep ; 10(1): 466, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949252

ABSTRACT

The Thoroughbred horse is a highly valued domestic animal population under strong selection for athletic phenotypes. Here we present a high resolution genomics-based analysis of inbreeding in the population that may form the basis for evidence-based discussion amid concerns in the breeding industry over the increasing use of small numbers of popular sire lines, which may accelerate a loss of genetic diversity. In the most comprehensive globally representative sample of Thoroughbreds to-date (n = 10,118), including prominent stallions (n = 305) from the major bloodstock regions of the world, we show using pan-genomic SNP genotypes that there has been a highly significant decline in global genetic diversity during the last five decades (FIS R2 = 0.942, P = 2.19 × 10-13; FROH R2 = 0.88, P = 1.81 × 10-10) that has likely been influenced by the use of popular sire lines. Estimates of effective population size in the global and regional populations indicate that there is some level of regional variation that may be exploited to improve global genetic diversity. Inbreeding is often a consequence of selection, which in managed animal populations tends to be driven by preferences for cultural, aesthetic or economically advantageous phenotypes. Using a composite selection signals approach, we show that centuries of selection for favourable athletic traits among Thoroughbreds acts on genes with functions in behaviour, musculoskeletal conformation and metabolism. As well as classical selective sweeps at core loci, polygenic adaptation for functional modalities in cardiovascular signalling, organismal growth and development, cellular stress and injury, metabolic pathways and neurotransmitters and other nervous system signalling has shaped the Thoroughbred athletic phenotype. Our results demonstrate that genomics-based approaches to identify genetic outcrosses will add valuable objectivity to augment traditional methods of stallion selection and that genomics-based methods will be beneficial to actively monitor the population to address the marked inbreeding trend.


Subject(s)
Genetics, Population , Genome , Horses/genetics , Inbreeding , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Genomics , Genotype , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...