Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 499: 257-64, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25194903

ABSTRACT

Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08µg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters--removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 µg/L to below the detection limit of 0.01 µg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and (14)C-labelled MCPP at an initial concentration of 0.2 µg/L. After 24 h, 79-86% of the initial concentration of MCPP was removed. Sorption removed 11-15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13-18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid/analogs & derivatives , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , 2-Methyl-4-chlorophenoxyacetic Acid/analysis , Filtration , Silicon Dioxide/chemistry , Waste Disposal, Fluid/methods
2.
Water Res ; 64: 309-320, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25086698

ABSTRACT

Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.


Subject(s)
Adenosine Triphosphate/analysis , Drinking Water/microbiology , Water Supply , Colony Count, Microbial/methods , Enterobacteriaceae/isolation & purification , Escherichia coli/isolation & purification , Wastewater/microbiology , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...