Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 188(9): 1982-1992, 2018 09.
Article in English | MEDLINE | ID: mdl-29981742

ABSTRACT

Effective diabetic kidney disease (DKD) biomarkers remain elusive, and urinary miRNAs represent a potential source of novel noninvasive disease sentinels. We profiled 754 miRNAs in pooled urine samples from DKD patients (n = 20), detecting significantly increased miR-126, miR-155, and miR-29b compared with controls (n = 20). These results were confirmed in an independent cohort of 89 DKD patients, 62 diabetic patients without DKD, and 41 controls: miR-126 (2.8-fold increase; P < 0.0001), miR-155 (1.8-fold increase; P < 0.001), and miR-29b (4.6-fold increase; P = 0.024). Combined receiver operating characteristic curve analysis resulted in an area under the curve of 0.8. A relative quantification threshold equivalent to 80% sensitivity for each miRNA gave a positive signal for 48% of DKD patients compared with 3.6% of diabetic patients without DKD. Laser-capture microdissection of renal biopsy specimens, followed by quantitative RT-PCR, detected miR-155 in glomeruli and proximal and distal tubules, whereas miR-126 and miR-29b were most abundant in glomerular extracts. Subsequent experiments showed miR-126 and miR-29b enrichment in glomerular endothelial cells (GEnCs) compared with podocytes, proximal tubular epithelial cells, and fibroblasts. Significantly increased miR-126 and miR-29b were detected in GEnC conditioned medium in response to tumor necrosis factor-α and transforming growth factor-ß1, respectively. Our data reveal an altered urinary miRNA profile associated with DKD and link these variations to miRNA release from GEnCs.


Subject(s)
Biomarkers/urine , Diabetic Nephropathies/diagnosis , MicroRNAs/genetics , Adult , Aged , Case-Control Studies , Cohort Studies , Computational Biology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/urine , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/urine , Middle Aged , Prognosis , ROC Curve
2.
Noncoding RNA ; 1(2): 151-166, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-29861421

ABSTRACT

A pressing need for new chronic kidney disease (CKD) biomarkers persists. MicroRNAs (miRNAs) are emerging as a novel class of disease biomarkers in body fluids, but mechanisms conferring their stability in urine have not been fully elucidated. Here we investigated stabilization in human urine of ubiquitously expressed miR-16, and miR-192, which we have shown previously to be downregulated in renal fibrosis, by association with extracellular vesicles and with argonaute protein (AGO) 2. Endogenous urinary miR-16 was significantly more resistant to RNase-mediated degradation than exogenous, spiked-in, Caenorhabditis elegans cel-miR-39. We used our previously optimized high-resolution exosome isolation protocol with sucrose gradient ultracentrifugation to sub-fractionate the primary extracellular vesicle-rich urinary pellet. MiR-16 and miR-192 were enriched in exosomal sucrose gradient fractions, but were also detected in all other fractions. This suggested association of urinary miRNAs with other urinary extracellular vesicles and/or pellet components, complicating previous estimates of miRNA:exosome stoichiometry. Proteinase K digestion destabilized urinary miR-16 and we showed, for the first time, RNA-immunoprecipitation of urinary miR-16:AGO2 and miR-192:AGO2 complexes. Association with exosomes and AGO2 stabilized urinary miR-16 and miR-192, suggesting quantitative urinary miRNA analysis has the potential to identify novel, non-invasive CKD biomarkers.

3.
Faraday Discuss ; 132: 303-8; discussion 309-19, 2006.
Article in English | MEDLINE | ID: mdl-16833125

ABSTRACT

Beads labelled using surface enhanced resonance Raman scattering (SERRS) are highly sensitive and specific tags, with potential applications in biological assays, including molecular diagnostics. The beads consist of a nucleus containing dye labelled silver-nanoparticle aggregates surrounded by a polymer core. The nuclei generate strong SERRS signals. To illustrate the coding advantage created by the sharp, molecularly specific SERRS signals, four specially designed SERRS dyes have been used as labels and three of these have been combined in a multiplex analysis. These dyes use specific groups such as benzotriazole and 8-hydroxyquinoline to improve binding to the surface of the silver particles. The aggregation state of the particles is held constant by the polymer core, this nucleus also contains many dye labels, yielding a very high Raman scattering intensity for each bead. To functionalise these beads for use in biological assays an outer polymer shell can be added, which allows the attachment of oligonucleotide probes. Oligonucleotide modified beads can then be used for detection of specific oligonucleotide targets. The specificity of SERRS will allow for the detection of multiple targets within a single assay.


Subject(s)
Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Oligonucleotide Probes , Silver/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...