Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(6): 064101, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792522

ABSTRACT

Independent electron surface hopping (IESH) is a computational algorithm for simulating the mixed quantum-classical molecular dynamics of adsorbate atoms and molecules interacting with metal surfaces. It is capable of modeling the nonadiabatic effects of electron-hole pair excitations on molecular dynamics. Here, we present a transparent, reliable, and efficient implementation of IESH, demonstrating its ability to predict scattering and desorption probabilities across a variety of systems, ranging from model Hamiltonians to full dimensional atomistic systems. We further show how the algorithm can be modified to account for the application of an external bias potential, comparing its accuracy to results obtained using the hierarchical quantum master equation. Our results show that IESH is a practical method for modeling coupled electron-nuclear dynamics at metal surfaces, especially for highly energetic scattering events.

2.
J Phys Chem C Nanomater Interfaces ; 126(15): 6880-6891, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35493697

ABSTRACT

Molecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors. Improving the stability of such molecular configurations is an optimization task involving many degrees of freedom and therefore best tackled by computational nanostructure design. Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error.

3.
Sci Adv ; 7(46): eabj9751, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757779

ABSTRACT

The part-by-part assembly of functional nanoscale machinery is a central goal of nanotechnology. With the recent fabrication of an isolated standing molecule with a scanning probe microscope, the third dimension perpendicular to the surface will soon become accessible to molecule-based construction. Beyond the flatlands of the surface, a wealth of structures and functionalities is waiting for exploration, but issues of stability are becoming more critical. Here, we combine scanning probe experiments with ab initio potential energy calculations to investigate the thermal stability of a prototypical standing molecule. We reveal its generic stabilization mechanism, a fine balance between covalent and van der Waals interactions including the latter's long-range screening by many-body effects, and find a remarkable agreement between measured and calculated stabilizing potentials. Beyond their relevance for the design and construction of three-dimensional molecular devices at surfaces, our results also indicate that standing molecules may serve as tunable mechanical gigahertz oscillators.

SELECTION OF CITATIONS
SEARCH DETAIL
...