Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37444000

ABSTRACT

Dairy farm profitability depends on milk yield, so the dairy industry manages cows to improve their productivity. Both bovine somatotropin (bST) and early lactation increased milking frequency (IMF) and milk yield (MY) in dairy cows. The objective of this study was to evaluate the effects of mid-lactation bST administration on milk production in established lactation when combined with the milk yield carry-over effect from early lactation IMF. Thirteen multiparous Holstein cows were milked unilaterally for 20 days in early lactation. The left udder halves were milked twice daily (2X) and the right udder halves were milked four times daily (4X). Udder halves milked 4X produced 8.60 ± 1.40 kg more than 2X on the final day of IMF treatment. Cows were then returned to 2X milking for the remainder of lactation and sampled on alternate days from 74-94 days in milk (DIM). Bovine somatotropin was administered to all cows at 80 DIM. The 4X halves continued to make 2.66 ± 0.12 kg/d more milk than 2X through 94 DIM. Fat, protein, and lactose yields were significantly greater in the 4X halves compared to the 2X from 74-94 DIM. Overall milk yield increased by 2.71 kg/d with bST administration. However, there was no significant interaction between MF and bST administration. We can infer from these data that the mechanisms by which bST and IMF in early lactation increase milk yield are complementary due to their non-synergistic nature of enhancing MY.

2.
Animals (Basel) ; 12(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36290196

ABSTRACT

Somatic cells normally found in milk are generally either immune cells such as lymphocytes, monocytes and granulocytes, or mammary epithelial cells. The number and composition of somatic cells in milk can be influenced by a variety of factors, including infection and temperature-humidity index. The objective of this study was to determine the specific effects of heat stress on the cellular composition of the somatic cell population in milk. We used flow cytometry to ascertain the concentration and viability of mammary epithelial cells, T cells, monocyte/macrophage, and granulocytes in milk from cows maintained under heat stressed conditions compared to thermoneutral conditions. We found a significant 10% increase in the natural log concentration of epithelial cells in the milk of heat stressed cows compared to thermoneutral cows (9.3 vs. 8.4 ln(cells/mL, p = 0.02)). We also found a 12% decrease in the log concentration of live CD45+ cells (p = 0.04), and a 17% decrease in the log concentration of live CD45+ granulocytes (p = 0.04). No changes were found in CD3+CD45+ cells or CD14+CD45+ cells, however, we noted an unusual population of CD14+CD45- cells that showed significant increases of 10% (p = 0.03) and 12% (p = 0.01) in the log concentration of total and dead cells, respectively, under heat stressed conditions. These results suggest that heat stress influences the relative populations and viability of some somatic cells populations in milk. Increased losses of secretory epithelial cells into milk could have implications for milk production, and fewer viable immune cells could negatively impact the immunocompetence of dairy cows under heat stress.

3.
J Equine Vet Sci ; 117: 104086, 2022 10.
Article in English | MEDLINE | ID: mdl-35872234

ABSTRACT

LinPro™ (LP) is a commercial dietary supplement marketed to increase hoof growth and quality. Ten mature (5-15 years) non-pregnant Quarter Horse mares without existing hoof quality issues were used to test the hypothesis that 32 weeks of daily supplementation with 113 g of LP would increase hoof growth rates as compared to non-supplemented controls. Hooves were trimmed at the start of the study and every 8 weeks thereafter. A mark was applied on the hoof wall surface at 2.5 cm below the junction of the hoof wall and coronary band. At each trimming, the distance between the mark and coronary band was measured and a new mark placed. For front hooves, horses assigned to LP had greater total hoof growth over 32 weeks (2.65 ± 0.15 vs. 2.18 ± 0.12 cm; P = .048) and tended to have greater hoof growth per 8 weeks trimming cycle (0.64 ± 0.03 vs. 0.55 ± 0.03 cm; P = .085) than horses assigned to non-supplemented controls (CON). Horses assigned to LP had greater plasma biotin concentrations (2158 ± 69 vs. 636 ± 62 ng/L; P < .001) and proportions of erucic acid in hoof tissue (1.03 ± 0.08 vs. 0.76 ± 0.07 %; P = .049) as compared to CON. Further, the most abundant fatty acids in hoof tissue were stearic, palmitic, oleic, and linoleic acids. LinPro may provide an effective treatment to improve hoof growth rates in horses with otherwise healthy hooves.


Subject(s)
Hoof and Claw , Animals , Biotin , Dietary Supplements , Erucic Acids , Female , Horses , Linoleic Acids
4.
J Dairy Sci ; 104(10): 11306-11316, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34275626

ABSTRACT

Trans-10,cis-12 conjugated linoleic acid (t10,c12 CLA) is well recognized as a key CLA isomer responsible for the reduction in milk fat synthesis that leads to milk fat depression in dairy cows. Sterol regulatory element binding protein-1 (SREBP1) is a key transcription factor in bovine mammary gland coordinating transcription of the genes for fatty acid synthesis. SREBP1 activation requires the removal of insulin-induced gene-1 (Insig1) that serves as a repressor of SREBP1 in the endoplasmic reticulum (ER). We hypothesized that t10,c12 CLA reduced SREBP1 activation by delaying Insig1 degradation. In the present study, we used undifferentiated bovine mammary epithelial cells (MAC-T cells) and treated them with t10,c12 CLA for 6 h. We found that SREBP1 protein expression declined over 56% when cells were treated with 60 µM or greater concentration of t10,c12 CLA. Such inhibitory effects were also observed in the mRNA expression of SREBP1-regulated genes including SREBP1, fatty acid synthetase, stearoyl-CoA desaturase, and Insig1. Compared with no CLA group, 60 µM or higher concentration of t10,c12 CLA increased Insig1 protein expression over 2-fold in cells transfected with FLAG-tagged Insig1. This stimulatory effect was not specific to t10,c12 CLA but also other polyunsaturated fatty acids including cis-9,trans-11 CLA and linoleic acid. Oleic acid had no effect on Insig1 protein expression, whereas palmitic acid decreased Insig1 protein expression. Further investigation revealed that increased abundance of FLAG-Insig1 with t10,c12 CLA was due to the inhibition of the proteasomal degradation of Insig1. The t10,c12 CLA delayed the Insig1 decay when protein synthesis was blocked. Immunoprecipitation also confirmed that the interaction between ubiquitin-like domain-containing protein 8 and Insig1, the key step of removing Insig1 from ER and freeing SREBP1 for proteolytic processing, was inhibited by t10,c12 CLA, but not palmitic acid. These findings suggested that t10,c12 CLA played a role in regulating SREBP1 activation by reducing proteasomal degradation of Insig1. We concluded that stabilized Insig1 retained SREBP1 in the ER from activation, thus reducing lipogenic gene transcription.


Subject(s)
Insulins , Linoleic Acids, Conjugated , Animals , Cattle , Epithelial Cells , Fatty Acids , Female , Linoleic Acids, Conjugated/pharmacology , Mammary Glands, Animal , Sterol Regulatory Element Binding Protein 1/genetics
5.
BMC Biotechnol ; 19(1): 25, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31060546

ABSTRACT

BACKGROUND: The CRISPR/Cas9 system can effectively introduce site-specific modifications to the genome. The efficiency is high enough to induce targeted genome modifications during embryogenesis, thus increasing the efficiency of producing genetically modified animal models and having potential clinical applications as an assisted reproductive technology. Because most of the CRISPR/Cas9 systems introduce site-specific double-stranded breaks (DSBs) to induce site-specific modifications, a major concern is its potential off-targeting activity, which may hinder the application of the technology in clinics. In this study, we investigated off-targeting events in genome edited pigs/fetuses that were generated through direct injection of the CRISPR/Cas9 system into developing embryos; off-targeting activity of four different sgRNAs targeting RAG2, IL2RG, SCD5, and Ig Heavy chain were examined. RESULTS: First, bioinformatics analysis was applied to identify 27 potential off-targeting genes from the sgRNAs. Then, PCR amplification followed by sequencing analysis was used to verify the presence of off-targeting events. Off-targeting events were only identified from the sgRNA used to disrupt Ig Heavy chain in pigs; frequency of off-targeting was 80 and 70% on AR and RBFOX1 locus respectively. A potential PAM sequence was present in both of the off-targeting genes adjacent to probable sgRNA binding sites. Mismatches against sgRNA were present only on the 5' side of AR, suggesting that off-targeting activities are systematic events. However, the mismatches on RBFOX1 were not limited to the 5' side, indicating unpredictability of the events. CONCLUSIONS: The prevalence of off-targeting is low via direct injection of CRISPR/Cas9 system into developing embryos, but the events cannot be accurately predicted. Off-targeting frequency of each CRISPR/Cas9 system should be deliberately assessed prior to its application in clinics.


Subject(s)
CRISPR-Cas Systems , Embryo, Mammalian/metabolism , Gene Editing/methods , Gene Targeting/methods , Animals , Base Sequence , Embryo, Mammalian/embryology , Mutation , Sequence Analysis, DNA , Swine
6.
Article in English | MEDLINE | ID: mdl-27134010

ABSTRACT

Extensive microbial biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen reduces the essential fatty acids (EFA) available for absorption in ruminant animals, but there is no published documentation of ruminants developing EFA deficiency. In ruminants, most circulating PUFA are found in the phospholipid (PL) and cholesteryl ester lipid classes that have slow turn-over compared to other lipid classes. The objective of this experiment was to measure fatty acid esterification patterns of the non-EFA palmitic (16:0) and oleic acid (18:1), and the EFA linoleic (18:2) and linolenic acid (18:3) in small intestine, liver, and muscle tissue of cows and pigs to identify tissues participating in sequestration of these FA in less metabolically active lipid classes in ruminants. Bovine and porcine small intestine, liver, and muscle explants were prepared and incubated in media containing radiolabeled 16:0, 18:1, 18:2, or 18:3 to measure esterification of fatty acids into PL and TG. Neither bovine nor porcine small intestine explants preferentially incorporated non-EFA compared to EFA into PL vs TG. Bovine liver explants esterified a larger proportion of EFA than non-EFA into PL compared to TG, while incorporation was similar among the FA tested in porcine liver explants. Bovine muscle explants showed preferential incorporation of EFA into PL rather than TG. Results show that bovine and porcine liver and muscle esterify EFA and non-EFA differently and that the conservation of EFA in ruminants is a result of preferential incorporation of EFA into PL mediated by bovine liver and muscle, but not the small intestine.


Subject(s)
Fatty Acids, Essential/metabolism , Intestine, Small/metabolism , Liver/metabolism , Muscles/metabolism , Animals , Cattle , Esterification , Fatty Acids, Essential/chemistry , Swine
7.
J Anim Sci Biotechnol ; 6(1): 26, 2015.
Article in English | MEDLINE | ID: mdl-26110055

ABSTRACT

Milk fatty acid composition is determined by several factors including diet. The milk fatty acid profile of dairy cows is low in polyunsaturated fatty acids, especially those of the n-3 series. Efforts to change and influence fatty acid profile with longer chain polyunsaturated fatty acids have proven challenging. Several barriers prevent easy transfer of dietary polyunsaturated fatty acids to milk fat including rumen biohydrogenation and fatty acid esterification. The potential for cellular uptake and differences in fatty acid incorporation into milk fat might also have an effect, though this has received less research effort. Given physiological impediments to enriching milk fat with polyunsaturated fatty acids, manipulating the genome of the cow might provide a greater increase than diet alone, but this too may be challenged by the physiology of the cow.

8.
J Dairy Res ; 81(3): 333-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24904960

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) greatly contributes to the unsaturated fatty acids present in milk and meat of cattle. The SCD1 enzyme introduces a double bond into certain saturated fatty acyl-CoAs producing monounsaturated fatty acids (MUFA). The SCD1 enzyme also has been shown to be active in the bovine mammary gland converting t11 18:1 (vaccenic acid) to c9 t11 conjugated linoleic acid (CLA). The objective of this study was to determine any association between the gene expression of SCD1 and occurrence of its products (c9 14:1, c9 16:1, c9 18:1, and c9 t11 18:2) in various bovine tissues. Tissue samples were obtained from lactating Holstein cows (n=28) at slaughter, frozen in liquid nitrogen and stored at -80 °C. Total RNA was extracted and converted to complementary DNA for quantitative real time polymerase chain reaction (PCR) analysis of the SCD1 gene. Extracted lipid was converted to fatty acid methyl esters and analysed by GC. Tissues varied in expression of SCD1 gene with mammary, cardiac, intestinal adipose, and skeletal muscle expressing greater copy number as compared with lung, large intestine, small intestine and liver (371, 369, 328, 286, 257, 145, 73, and 21 copies/ng RNA, respectively). Tissues with high mRNA expression of SCD1 contained greater SCD1 protein whereas detection of SCD1 protein in tissues with low SCD1 mRNA expression was very faint or absent. Across tissues, the desaturase indices for c9 18:1 (r=0.24) and sum of SCD products (r=0.20) were positively correlated with SCD1 gene expression (P<0.01 for both). Within each tissue, the relationship between SCD1 gene expression and the desaturase indices varied. No correlation was detected between SCD1 expression and desaturase indices in the liver, large and small intestines, lung, cardiac or skeletal muscles. Positive correlations, however, were detected between SCD1 expression and the desaturase indices in intestinal adipose tissue (P<0.02 for all) except 14:1, whereas only c9 18:1, c9 t11 18:2 and sum of all desaturase indices were positively correlated with SCD1 expression in mammary tissue (P < or = 0.03). Overall, the relationship between SCD1 gene expression and occurrence of its products seems to be tissue specific.


Subject(s)
Fatty Acids/biosynthesis , Stearoyl-CoA Desaturase/biosynthesis , Animals , Cattle , Fatty Acids/analysis , Female , Gene Expression , Intestines/chemistry , Intestines/enzymology , Mammary Glands, Animal/chemistry , Mammary Glands, Animal/enzymology , Muscle, Skeletal/chemistry , Muscle, Skeletal/enzymology , Myocardium/chemistry , Myocardium/enzymology , Real-Time Polymerase Chain Reaction/veterinary , Stearoyl-CoA Desaturase/metabolism , Tissue Distribution
9.
World J Gastroenterol ; 19(31): 5094-102, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23964143

ABSTRACT

AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model. METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses. RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). (3)H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol. CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model.


Subject(s)
Infant Formula/metabolism , Intestinal Mucosa/metabolism , Protein-Energy Malnutrition/metabolism , Rotavirus Infections/metabolism , Rotavirus Infections/virology , Animals , Animals, Newborn , Diarrhea/metabolism , Diarrhea/virology , Disease Models, Animal , Electric Impedance , Humans , Infant, Newborn , Intestinal Absorption , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Mannitol/metabolism , Occludin/metabolism , Permeability , Protein-Energy Malnutrition/pathology , Protein-Energy Malnutrition/virology , Rotavirus Infections/pathology , Swine , Tight Junctions/metabolism , Tight Junctions/virology , Time Factors , Weight Loss
10.
J Nutr ; 142(7): 1266-71, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22623387

ABSTRACT

Infant formula companies have been fortifying formulas with long-chain PUFA for 10 y. Long-chain PUFA are precursors of prostanoids, which stimulate recovery of intestinal barrier function. Supplementation of milk with PUFA increases the content of arachidonic acid (ARA) in enterocyte membranes; however, the effect of this enrichment on intestinal repair is not known. The objective of these experiments was to investigate the effect of supplemental ARA on intestinal barrier repair in ischemia-injured porcine ileum. One-day-old pigs (n = 24) were fed a milk-based formula for 10 d. Diets contained no PUFA (0% ARA), 0.5% ARA, 5% ARA, or 5% EPA of total fatty acids. Following dietary enrichment, ilea were subjected to in vivo ischemic injury by clamping the local mesenteric blood supply for 45 min. Following the ischemic period, control (nonischemic) and ischemic loops were mounted on Ussing chambers. Transepithelial electrical resistance (TER) was measured over a 240-min recovery period. Ischemia-injured ileum from piglets fed 5% ARA (61.0 ± 14%) exhibited enhanced recovery compared with 0% ARA (16 ± 14) and 0.5% ARA (22.1 ± 14)-fed pigs. Additionally, ischemia-injured ileum from 5% EPA (51.3 ± 14)-fed pigs had enhanced recovery compared with 0% ARA-fed pigs (P < 0.05). The enhanced TER recovery response observed with ischemia-injured 5% ARA supplementation was supported by a significant reduction in mucosal-to-serosal flux of (3)H-mannitol and (14)C-inulin compared with all other ischemia-injured dietary groups (P < 0.05). A histological evaluation of ischemic ilea from piglets fed the 5% ARA showed reduced histological lesions after ischemia compared with the other dietary groups (P < 0.05). These data demonstrate that feeding elevated levels of long-chain PUFA enhances acute recovery of ischemia-injured porcine ileum.


Subject(s)
Dietary Fats/pharmacology , Dietary Supplements , Eicosapentaenoic Acid/pharmacology , Ileal Diseases/drug therapy , Ileum/drug effects , Intestinal Mucosa/drug effects , Ischemia/drug therapy , Animals , Constriction , Diet , Electric Impedance , Ileal Diseases/pathology , Ileal Diseases/physiopathology , Ileum/pathology , Ileum/physiopathology , Intestinal Mucosa/pathology , Intestinal Mucosa/physiopathology , Inulin/blood , Ischemia/pathology , Ischemia/physiopathology , Mannitol/blood , Mesentery/blood supply , Swine , Wound Healing/drug effects
11.
Biochem Biophys Res Commun ; 421(2): 375-9, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22510410

ABSTRACT

In rodents, the transcription factors early growth response 2 (EGR2) and sterol regulatory element binding protein 1a (SREBP1a) regulate transcription of the stearoyl-CoA desaturase 2 (SCD2) gene during peripheral nerve myelination, which may be important for synthesis of the lipid component of myelin. Most non-rodent genomes do not contain the SCD2 gene, but rather express SCD5 in brain and nervous tissues. In this paper, we asked whether bovine SCD5 is regulated in a similar manner to rodent SCD2. Expression of EGR2 did not result in an increase in endogenous SCD5 mRNA expression in JEG3 cells, but did result in activation of truncated bovine SCD5 promoter luciferase reporter constructs. Similar results were obtained with expression of the active form of SREBP1a; however, unlike rodent SCD2, there was no synergistic activation of the bovine SCD5 promoter reporters when EGR2 and SREBP1a were co-expressed. Mutation of the putative EGR2 binding site in the SCD5 promoter abolished activation by SREBP1a, suggesting that EGR2 and SREBP1a bind to the same site in the SCD5 promoter. Finally, we have identified a region of the bovine SCD5 promoter between 505 and 305 base pairs upstream of the transcriptional start site that appears to be important for maintaining basal levels of transcription of this gene. While it appears that there are some differences between the regulation of rodent SCD2 and bovine SCD5, the promoters of both genes can be activated by EGR2 and SREBP1a. This is the first report of potential regulators of SCD5 transcription.


Subject(s)
Early Growth Response Protein 2/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Cattle , Cell Line, Tumor , Early Growth Response Protein 2/genetics , Humans , Mutation , Sterol Regulatory Element Binding Protein 1/genetics , Transcription, Genetic
12.
PLoS One ; 7(2): e31238, 2012.
Article in English | MEDLINE | ID: mdl-22363592

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. METHODOLOGY/PRINCIPAL FINDINGS: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. CONCLUSIONS/SIGNIFICANCE: Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis.


Subject(s)
Bacteria/metabolism , Colitis/drug therapy , Gastrointestinal Tract/metabolism , Linoleic Acids, Conjugated/metabolism , Macrophages/metabolism , PPAR gamma/metabolism , Probiotics/therapeutic use , Animals , Bacteria/drug effects , Biodiversity , Colitis/blood , Colitis/genetics , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Gene Expression Regulation/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Macrophages/drug effects , Metabolomics , Mice , Mice, Inbred C57BL , Models, Biological , Probiotics/pharmacology , Protective Agents/pharmacology , Protective Agents/therapeutic use
13.
Animals (Basel) ; 2(2): 243-60, 2012 May 02.
Article in English | MEDLINE | ID: mdl-26486919

ABSTRACT

Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-α, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related.

14.
Vet Immunol Immunopathol ; 145(1-2): 42-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22088672

ABSTRACT

Equine metabolic syndrome (EMS) is a condition of obese horses characterized by insulin resistance, systemic inflammation, and an increased risk of laminitis. The pathogenesis of EMS is thought, in part, to be due to inflammatory proteins produced by adipose tissue. Reducing inflammation may decrease the incidence of laminitis in horses with EMS. Pioglitazone hydrochloride, a thiazolidinedione, has efficacy to reduce obesity associated inflammation in humans. Eight normal, adult, horses were administered 1mg/kg pioglitazone for 14 days, and eight horses served as controls. Physical examination and hematologic variables, transcript abundance of pro-inflammatory cytokines in skeletal muscle and adipose tissue, and circulating concentrations of the acute phase protein, serum amyloid A and pro-inflammatory cytokine, TNF-α were assessed prior to, and following, an LPS infusion (35 ng/kg). The objective was to determine if pre-treatment with pioglitazone would mitigate the development of inflammation and associated clinical markers of inflammation following LPS administration. Lipopolysaccharide administration induced systemic inflammation, as assessed by clinical and hematological aberrations, increased TNF-α, SAA and adipose tissue IL-6 mRNA abundance, however no mitigating effects of pioglitazone were detected. A longer treatment period or higher dose might be indicated for future experiments.


Subject(s)
Horse Diseases/drug therapy , Hypoglycemic Agents/pharmacology , Inflammation/veterinary , Lipopolysaccharides/pharmacology , Thiazolidinediones/pharmacology , Adipose Tissue/chemistry , Adipose Tissue/drug effects , Animals , Biomarkers/analysis , Biomarkers/blood , Chemokine CCL2/analysis , Chemokine CCL8/analysis , Female , Horse Diseases/blood , Horse Diseases/immunology , Horses/blood , Horses/immunology , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Inflammation/immunology , Interleukin-1beta/analysis , Interleukin-1beta/blood , Interleukin-6/analysis , Interleukin-6/blood , Interleukin-8/analysis , Leptin/analysis , Muscle, Skeletal/chemistry , Muscle, Skeletal/drug effects , Pioglitazone , Plasminogen Activator Inhibitor 1/analysis , Thiazolidinediones/therapeutic use , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/blood
15.
Vet Immunol Immunopathol ; 142(3-4): 141-6, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21621276

ABSTRACT

Laminitis is a painful, inflammatory disease of the equine hoof that often results in euthanasia. Elevated plasma insulin concentrations are a predictive factor for laminitis, and in previously healthy horses and ponies, laminitis was induced by infusion of insulin. Thus, we chose to determine if an infusion of insulin would increase plasma concentrations of inflammatory cytokines and cytokine mRNA abundance in subcutaneous adipose tissue, skeletal muscle, and white blood cells. Ten mature Thoroughbred mares received an insulin infusion that elevated plasma insulin concentrations for 6h or an equivalent volume of isotonic saline in a switchback design. Insulin infusion altered plasma concentrations of both TNF (P=0.037) and IL-6 (P=0.044), but did not result in consistent changes to either skeletal muscle or adipose tissue cytokine mRNA. Insulin may be involved in the production of inflammatory cytokines, and this could be a mechanism for insulin increasing the risk of laminitis.


Subject(s)
Foot Diseases/veterinary , Gene Expression Regulation/immunology , Hoof and Claw/immunology , Horse Diseases/chemically induced , Hyperinsulinism/veterinary , Muscle, Skeletal/immunology , Subcutaneous Fat/immunology , Animals , Biopsy/veterinary , Cross-Over Studies , Female , Foot Diseases/chemically induced , Foot Diseases/immunology , Horse Diseases/immunology , Horses , Hyperinsulinism/immunology , Interleukin-6/genetics , Interleukin-6/immunology , RNA/chemistry , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
16.
J Nutr ; 141(4): 548-53, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21310868

ABSTRACT

Because dietary arachidonate (ARA) and its eicosanoid derivatives are major regulators of intestinal homeostasis and repair following injury, we evaluated the effects of dietary ARA on desaturation and elongation of (13)C-18:2(n-6) and mRNA abundance of Δ-6-desaturase (FADS2), elongase (ELOVL5), and Δ-5-desaturase (FADS1) in liver and intestine. Day-old pigs (n = 96) were fed milk-based formula containing 0, 0.5, 2.5, or 5% ARA or 5% eicosapentaenoic acid of total fatty acids for 4, 8, and 16 d. In liver, the desaturation rate [nmol/(g tissue⋅h)] of (13)C-18:2(n-6) to (13)C-18:3(n-6) decreased 56% between 4 and 16 d but was not affected by diet. Whereas accumulation in (13)C-20:3(n-6) also decreased with age by 67%, it increased linearly with increasing dietary ARA (P < 0.06). In comparison, intestinal flux was ~50% less than liver flux and was unaffected by age, but desaturation to (13)C-18:3(n-6) increased linearly (by 57%) in pigs fed ARA diets (P < 0.001), equaling the rate observed in sow-fed controls. In both liver and intestine, alternate elongation to (13)C-20:2(n-6) (via Δ-8-desaturase) was markedly elevated in pigs fed the 0% ARA diet compared with all other dietary treatments (P < 0.01). Transcript abundance of FADS2, ELOVL5, and FADS1 was not affected in liver by diet (P > 0.05) but decreased precipitously between birth and d 4 (~70%; P < 0.05). In contrast, intestinal abundance of FADS2 and FADS1 increased 60% from d 4 to 16. In conclusion, dietary ARA regulated the desaturase-elongase pathway in a tissue-specific manner. In liver, ARA had modest effects on (n-6) fatty acid flux, and intestinal FADS2 activity and mRNA increased. Additionally, hepatic flux decreased with postnatal age, whereas intestinal flux did not change.


Subject(s)
Acetyltransferases/metabolism , Arachidonic Acid/administration & dosage , Fatty Acid Desaturases/metabolism , Intestinal Mucosa/metabolism , Linoleoyl-CoA Desaturase/metabolism , Liver/metabolism , Acetyltransferases/genetics , Animals , Animals, Suckling , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Fatty Acid Elongases , Fatty Acids/metabolism , Linoleoyl-CoA Desaturase/genetics , Organ Specificity , Protein Transport , RNA, Messenger/analysis , Swine
17.
J Nutr Biochem ; 22(11): 1047-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21216581

ABSTRACT

Effects of dietary conjugated linoleic acid (CLA, 1% mixed isomers) on n-6 long-chain polyunsaturated fatty acid (LCPUFA) oxidation and biosynthesis were investigated in liver and brain tissues of neonatal piglets. Fatty acid ß-oxidation was measured in tissue homogenates using [1-(14)C]linoleic acid (LA) and -arachidonic acid (ARA) substrates, while fatty acid desaturation and elongation were traced using [U-(13)C]LA and GC-MS. Dietary CLA had no effect on fatty acid ß-oxidation, but significantly decreased n-6 LCPUFA biosynthesis by inhibition of LA elongation and desaturation. Differences were noted between our (13)C tracer assessment of desaturation/elongation and simple precursor-product indices computed from fatty acid composition data, indicating that caution should be exercised when employing the later. The inhibitory effects of CLA on elongation/desaturation were more pronounced in pigs fed a low fat diet (3% fat) than a high fat diet (25% fat). Direct elongation of linoleic acid to C20:2n-6 via the alternate elongation pathway might play an important role in n-6 LCPUFA synthesis because more than 40% of the synthetic products of [U-(13)C]LA accumulated in [(13)C]20:2n-6. Overall, the data show that dietary CLA shifted the distribution of the synthetic products of [U-(13)C]LA between elongation and desaturation in liver and decreased the total synthetic products of [U-(13)C]LA in brain by inhibiting LA elongation to C20:2n-6. The impact of CLA on brain LCPUFA metabolism of the developing neonate merits consideration and further investigation.


Subject(s)
Brain/metabolism , Dietary Fats/administration & dosage , Fatty Acids, Unsaturated/metabolism , Linoleic Acid/metabolism , Linoleic Acids, Conjugated/pharmacology , Liver/metabolism , Acetyltransferases/metabolism , Animals , Animals, Newborn , Arachidonic Acid/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Swine
18.
Article in English | MEDLINE | ID: mdl-19962447

ABSTRACT

The lipogenic capacities of equine liver and adipose tissue explants were investigated in vitro. Preference for glucose or acetate as the primary carbon source for de novo fatty acid synthesis was determined using (14)C labeled substrates. Additional aims included determining the relative contribution of NADPH generating pathways to reducing equivalent generation and comparing the lipogenic activity of two adipose depots, mesenteric and subcutaneous harvested from the crest region of the neck. Mesenteric adipose tissue had greater lipogenic activity than subcutaneous adipose tissue, and liver tissue showed minimal (14)C incorporation into fatty acids, indicating a low hepatic lipogenic capacity. Acetate was found to be the primary carbon source for fatty acid synthesis due to both the appearance of the (14)C label in the lipid fraction and the low activity of ATP-citrate lyase. Finally, the pentose phosphate and isocitrate dehydrogenase enzymes contributed to NADPH production in equine adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Fatty Acids/biosynthesis , Horses/metabolism , Liver/cytology , Liver/metabolism , NADP/biosynthesis , Acetates/metabolism , Animals , Fatty Acids/metabolism , Glucose/metabolism , Lipogenesis , NADP/metabolism , Substrate Specificity
19.
Biochem Biophys Res Commun ; 390(3): 388-93, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-19747896

ABSTRACT

Activation of AMP-activated protein kinase (AMPK), a heterotrimeric energy-sensing protein, decreases lipid synthesis in liver tissue of various species; however, little is known about the role of AMPK in the regulation of fatty acid synthesis in bovine mammary epithelial cells. Here we report the presence of AMPK mRNA in MAC-T bovine mammary epithelial cells and mammary gland. Treatment of MAC-T with an AMPK activator dramatically decreased de novo fatty acid synthesis by inactivating acetyl-CoA carboxylase-alpha. Activation of AMPK also modified the mRNA expression of several lipogenic genes including fatty acid synthase, glycerol-3-phosphate acyltransferase, and fatty acid binding protein-3. Additionally, decreases in energy availability or rises in intracellular Ca(2+) most likely activated AMPK in MAC-T. These data suggest the presence of LKB1 and Ca(2+)/calmodulin-dependent kinase kinase, two known AMPK kinases, in MAC-T. Identifying AMPK as a molecular target capable of modifying energy substrate utilization may result in the development of new technologies that increase milk production or modify milk composition during periods of increased energy demand.


Subject(s)
AMP-Activated Protein Kinases/biosynthesis , Fatty Acids/antagonists & inhibitors , Gene Expression Regulation, Enzymologic , Lipogenesis/genetics , Mammary Glands, Animal/enzymology , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Cattle , Cell Line , Enzyme Activation , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Fatty Acids/genetics , Female , Glycerol-3-Phosphate O-Acyltransferase/genetics , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/biosynthesis , Ribonucleotides/pharmacology
20.
J Nutr ; 138(11): 2164-71, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18936214

ABSTRACT

Infant formula companies began fortifying formulas with long-chain PUFA in 2002, including arachidonic acid (ARA) at approximately 0.5% of total fatty acids. The primary objective of this study was to determine the time-specific effects of feeding formula enriched with supra-physiologic ARA on fatty acid composition of intestinal mucosal phospholipids. One-day-old pigs (n = 96) were fed a milk-based formula for 4, 8, or 16 d. Diets contained either no PUFA (0% ARA, negative control), 0.5% ARA, 2.5% ARA, 5% ARA, or 5% eicosapentaenoic acid (EPA) of total fatty acids (wt:wt). Growth (299 +/- 21 g/d) and clinical hematology were unaffected by treatment (P > 0.6). Although minimal on d 4, concentrations of ARA in jejunal mucosa were enriched 47, 272 and 428% by d 8 and 144, 356, and 415% by d 16 in pigs fed the 0.5% ARA, 2.5% ARA, and 5% ARA diets, respectively, compared with the 0% ARA control pigs (P < 0.01). On d 16, ARA enrichment increased progressively with increasing dietary ARA supplementation from 0 to 2.5% but plateaued as dietary ARA rose to 5%. A similar pattern of ARA enrichment was observed in ileal mucosal phospholipids, but maximal enrichment in the ileum exceed that in the jejunum by >50%. As ARA increased, linoleic acid content decreased reciprocally. Although maximal enterocyte enrichment with EPA approached 20-fold by d 8, concentrations were only approximately 50% of those attained for ARA. Negligible effects on gross villus/crypt morphology were observed. These data demonstrate a dose-dependent response of intestinal mucosal phospholipid ARA concentration to dietary ARA with nearly full enrichment attained within 8 d of feeding formula containing ARA at 2.5% of total fatty acids and that supra-physiologic supplementation of ARA is not detrimental to growth.


Subject(s)
Arachidonic Acid/administration & dosage , Arachidonic Acid/pharmacology , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Animals , Diet , Dose-Response Relationship, Drug , Drug Administration Schedule , Lactase/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...