Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Oncol ; 13: 1272883, 2023.
Article in English | MEDLINE | ID: mdl-38023151

ABSTRACT

Pediatric B-acute lymphoblastic leukemia (B-ALL) is a disease of abnormally growing B lymphoblasts. Here we hypothesized that extracellular vesicles (EVs), which are nanosized particles released by all cells (including cancer cells), could be used to monitor B-ALL severity and progression by sampling plasma instead of bone marrow. EVs are especially attractive as they are present throughout the circulation regardless of the location of the originating cell. First, we used nanoparticle tracking analysis to compare EVs between non-cancer donor (NCD) and B-ALL blood plasma; we found that B-ALL plasma contains more EVs than NCD plasma. We then isolated EVs from NCD and pediatric B-ALL peripheral blood plasma using a synthetic peptide-based isolation technique (Vn96), which is clinically amenable and isolates a broad spectrum of EVs. RNA-seq analysis of small RNAs contained within the isolated EVs revealed a signature of differentially packaged and exclusively packaged RNAs that distinguish NCD from B-ALL. The plasma EVs contain a heterogenous mixture of miRNAs and fragments of long non-coding RNA (lncRNA) and messenger RNA (mRNA). Transcripts packaged in B-ALL EVs include those involved in negative cell cycle regulation, potentially suggesting that B-ALL cells may use EVs to discard gene sequences that control growth. In contrast, NCD EVs carry sequences representative of multiple organs, including brain, muscle, and epithelial cells. This signature could potentially be used to monitor B-ALL disease burden in pediatric B-ALL patients via blood draws instead of invasive bone marrow aspirates.

2.
Insect Biochem Mol Biol ; 152: 103892, 2023 01.
Article in English | MEDLINE | ID: mdl-36493963

ABSTRACT

High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.


Subject(s)
Diet, High-Fat , Metabolic Diseases , Animals , Fatty Acids/metabolism , Drosophila melanogaster/metabolism , Lipid Metabolism , Metabolome , Drosophila/metabolism
3.
Cells ; 11(15)2022 08 03.
Article in English | MEDLINE | ID: mdl-35954238

ABSTRACT

The golden Syrian hamster (Mesocricetus auratus) has long been a valuable rodent model of human diseases, especially infectious and metabolic diseases. Hamsters have also been valuable models of several chemically induced cancers such as the DMBA-induced oral cheek pouch cancer model. Recently, with the application of CRISPR/Cas9 genetic engineering technology, hamsters can now be gene targeted as readily as mouse models. This review describes the phenotypes of three gene-targeted knockout (KO) hamster cancer models, TP53, KCNQ1, and IL2RG. Notably, these hamster models demonstrate cancer phenotypes not observed in mouse KOs. In some cases, the cancers that arise in the KO hamster are similar to cancers that arise in humans, in contrast with KO mice that do not develop the cancers. An example is the development of aggressive acute myelogenous leukemia (AML) in TP53 KO hamsters. The review also presents a discussion of the relative strengths and weaknesses of mouse cancer models and hamster cancer models and argues that there are no perfect rodent models of cancer and that the genetically engineered hamster cancer models can complement mouse models and expand the suite of animal cancer models available for the development of new cancer therapies.


Subject(s)
Mouth Neoplasms , Animals , Cloning, Molecular , Cricetinae , Genetic Engineering , Humans , Mesocricetus , Mice , Mouth Neoplasms/chemically induced , Mouth Neoplasms/genetics
4.
J Pers Med ; 12(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35743652

ABSTRACT

Cystic Fibrosis (CF) is a disease caused by mutations in the CFTR gene that severely affects the lungs as well as extra-pulmonary tissues, including the gastrointestinal (GI) tract. CFTR dysfunction resulting from either mutations or the downregulation of its expression has been shown to promote carcinogenesis. An example is the enhanced risk for several types of cancer in patients with CF, especially cancers of the GI tract. CFTR also acts as a tumor suppressor in diverse sporadic epithelial cancers in many tissues, primarily due to the silencing of CFTR expression via multiple mechanisms, but especially due to epigenetic regulation. This review provides an update on the latest research linking CFTR-deficiency to GI cancers, in both CF patients and in sporadic GI cancers, with a particular focus on cancer of the intestinal tract. It will discuss changes in the tissue landscape linked to CFTR-deficiency that may promote cancer development such as breakdowns in physical barriers, microbial dysbiosis and inflammation. It will also discuss molecular pathways and mechanisms that act upstream to modulate CFTR expression, such as by epigenetic silencing, as well as molecular pathways that act downstream of CFTR-deficiency, such as the dysregulation of the Wnt/ß-catenin and NF-κB signaling pathways. Finally, it will discuss the emerging CFTR modulator drugs that have shown promising results in improving CFTR function in CF patients. The potential impact of these modulator drugs on the treatment and prevention of GI cancers can provide a new example of personalized cancer medicine.

5.
J Carcinog ; 20: 18, 2021.
Article in English | MEDLINE | ID: mdl-34729050

ABSTRACT

BACKGROUND: The TP53 tumor suppressor gene is the most commonly mutated gene in human cancers. Humans who inherit mutant TP53 alleles develop a wide range of early onset cancers, a disorder called Li-Fraumeni Syndrome (LFS). Trp53-deficient mice recapitulate most but not all of the cancer phenotypes observed in TP53-deficient human cancers, indicating that new animal models may complement current mouse models and better inform on human disease development. MATERIALS AND METHODS: The recent application of CRISPR/Cas9 genetic engineering technology has permitted the emergence of golden Syrian hamsters as genetic models for wide range of diseases, including cancer. Here, the first cancer phenotype of TP53 knockout golden Syrian hamsters is described. RESULTS: Hamsters that are homozygous for TP53 mutations become moribund on average ~ 139 days of age, while hamsters that are heterozygous become moribund at ~ 286 days. TP53 homozygous knockout hamsters develop a wide range of cancers, often synchronous and metastatic to multiple tissues, including lymphomas, several sarcomas, especially hemangiosarcomas, myeloid leukemias and several carcinomas. TP53 heterozygous mutants develop a more restricted tumor spectrum, primarily lymphomas. CONCLUSIONS: Overall, hamsters may provide insights into how TP53 deficiency leads to cancer in humans and can become a new model to test novel therapies.

7.
Insect Biochem Mol Biol ; 133: 103556, 2021 06.
Article in English | MEDLINE | ID: mdl-33626368

ABSTRACT

Metabolic inflexibility is a condition that occurs following a nutritional stress which causes blunted fuel switching at the mitochondrial level in response to hormonal and cellular signalling. Linked to obesity and obesity related disorders, chronic exposure to a high-fat diet (HFD) in animal models has been extensively used to induce metabolic inflexibility and investigate the development of various metabolic diseases. However, many questions concerning the systemic and mitochondrial responses to metabolic inflexibility remain. In this study, we investigated the global and mitochondrial variations following a 10-day exposure to a HFD in adult Drosophila melanogaster. Our results show that following 10-day exposure to the HFD, mitochondrial respiration rates measured in isolated mitochondria at the level of complex I were decreased. This was associated with increased contributions of non-classical providers of electrons to the electron transport system (ETS) such as the proline dehydrogenase (ProDH) and the mitochondrial glycerol-3-phosphate dehydrogenase (mtG3PDH) alleviating complex I dysfunctions, as well as with increased ROS production per molecule of oxygen consumed. Our results also show an accumulation of metabolites from multiple different metabolic pathways in whole adult Drosophila and a drastic shift in the lipid profile which translated into decreased proportion of saturated and monounsaturated fatty acids combined with an increased proportion of polyunsaturated fatty acids. Thus, our results demonstrate the various responses to the HFD treatment in adult Drosophila melanogaster that are hallmarks of the development of metabolic inflexibility and reinforce this organism as a suitable model for the study of metabolic disorders.


Subject(s)
Diet, High-Fat , Drosophila melanogaster/metabolism , Lipid Metabolism , Mitochondria/metabolism , Animals , Drosophila Proteins/metabolism , Electron Transport Complex I/metabolism , Fatty Acids/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Metabolomics , Models, Animal , Reactive Oxygen Species/metabolism
8.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326161

ABSTRACT

Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/ß-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.


Subject(s)
Colorectal Neoplasms/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genetic Predisposition to Disease , Mutation , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dysbiosis , Early Detection of Cancer , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Genes, Tumor Suppressor , Genetic Association Studies , Genotype , Homeostasis/genetics , Humans , Immunomodulation/genetics , Immunomodulation/immunology , Intestines , Risk Assessment , Signal Transduction , Stress, Physiological
9.
World J Gastroenterol ; 25(38): 5732-5772, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31636470

ABSTRACT

In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis/pathology , Gastrointestinal Neoplasms/drug therapy , Ion Channels/metabolism , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis/drug effects , Disease Models, Animal , Disease Progression , Disease-Free Survival , Down-Regulation , Gastrointestinal Neoplasms/mortality , Gastrointestinal Neoplasms/pathology , Humans , Ion Channels/antagonists & inhibitors , Up-Regulation
10.
Sci Rep ; 9(1): 4531, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872605

ABSTRACT

Mitochondria can utilize different fuels according to physiological and nutritional conditions to promote cellular homeostasis. However, during nutrient overload metabolic inflexibility can occur, resulting in mitochondrial dysfunctions. High-fat diets (HFDs) are usually used to mimic this metabolic inflexibility in different animal models. However, how mitochondria respond to the duration of a HFD exposure is still under debate. In this study, we investigated the dynamic of the mitochondrial and physiological functions in Drosophila melanogaster at several time points following an exposure to a HFD. Our results showed that after two days on the HFD, mitochondrial respiration as well as ATP content of thorax muscles are increased, likely due to the utilization of carbohydrates. However, after four days on the HFD, impairment of mitochondrial respiration at the level of complex I, as well as decreased ATP content were observed. This was associated with an increased contribution of complex II and, most notably of the mitochondrial glycerol-3-phosphate dehydrogenase (mG3PDH) to mitochondrial respiration. We suggest that this increased mG3PDH capacity reflects the occurrence of metabolic inflexibility, leading to a loss of homeostasis and alteration of the cellular redox status, which results in senescence characterized by decreased climbing ability and premature death.


Subject(s)
Diet, High-Fat , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Animals , Diet, High-Fat/veterinary , Drosophila Proteins/metabolism , Drosophila melanogaster , Electron Transport Complex I/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Longevity , Male , Muscles/metabolism , Oxidative Phosphorylation , Respiratory Rate
11.
J Carcinog ; 17: 6, 2018.
Article in English | MEDLINE | ID: mdl-30450013

ABSTRACT

BACKGROUND: The golden Syrian hamster is an emerging model organism. To optimize its use, our group has made the first genetically engineered hamsters. One of the first genes that we investigated is KCNQ1 which encodes for the KCNQ1 potassium channel and also has been implicated as a tumor suppressor gene. MATERIALS AND METHODS: We generated KCNQ1 knockout (KO) hamsters by CRISPR/Cas9-mediated gene targeting and investigated the effects of KCNQ1-deficiency on tumorigenesis. RESULTS: By 70 days of age seven of the eight homozygous KCNQ1 KOs used in this study began showing signs of distress, and on necropsy six of the seven ill hamsters had visible cancers, including T-cell lymphomas, plasma cell tumors, hemangiosarcomas, and suspect myeloid leukemias. CONCLUSIONS: None of the hamsters in our colony that were wild-type or heterozygous for KCNQ1 mutations developed cancers indicating that the cancer phenotype is linked to KCNQ1-deficiency. This study is also the first evidence linking KCNQ1-deficiency to blood cancers.

12.
Mar Drugs ; 16(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453574

ABSTRACT

During the last decade, essential polyunsaturated fatty acids (PUFAs) such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine sources have been investigated as nonpharmacological dietary supplements to improve different pathological conditions, as well as aging. The aim of this study was to determine the effects of dietary n-3 PUFA monoacylglycerides (MAG, both EPA and DHA) on the mitochondrial metabolism and oxidative stress of a short-lifespan model, Drosophila melanogaster, sampled at five different ages. Our results showed that diets supplemented with MAG-EPA and MAG-DHA increased median lifespan by 14.6% and decreased mitochondrial proton leak resulting in an increase of mitochondrial coupling. The flies fed on MAG-EPA also had higher electron transport system capacity and mitochondrial oxidative capacities. Moreover, both n-3 PUFAs delayed the occurrence of lipid peroxidation but only flies fed the MAG-EPA diet showed maintenance of superoxide dismutase activity during aging. Our study therefore highlights the potential of n-3 PUFA monoacylglycerides as nutraceutical compounds to delay the onset of senescence by acting directly or indirectly on the mitochondrial metabolism and suggests that Drosophila could be a relevant model for the study of the fundamental mechanisms linking the effects of n-3 PUFAs to aging.


Subject(s)
Dietary Supplements , Longevity/drug effects , Mitochondria/drug effects , Monoglycerides/pharmacology , Animals , Drosophila melanogaster , Lipid Peroxidation/drug effects , Male , Mitochondria/metabolism , Models, Animal , Oxidative Stress/drug effects
13.
Dis Esophagus ; 30(2): 1-9, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27003597

ABSTRACT

Early detection of esophageal squamous cell carcinoma (ESCC) is urgently needed to reduce the high morbidity and mortality of disease. Circulating microRNAs (miRNAs) are promising molecular biomarkers for ESCC prediction. We performed a comprehensive meta-analysis to systematically evaluate the diagnostic accuracy of circulating miRNAs in diagnosis of ESCC patients. Eligible studies were identified and assessed for quality employing multiple search strategies. Summary estimates for sensitivity, specificity, and other measures of accuracy of miRNAs in the diagnosis of ESCC were pooled using the bivariate random effects model. A total of 27 studies from 11 published articles were included in the meta-analysis. The overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating miRNAs for the diagnosis of ESCC were 79.9% (95% confidence intervals [CI]: 76.2%-83.1%), 81.3% (95% CI: 75.7-85.9), 4.27 (95%CI: 3.27-5.58), 0.25 (95% CI: 0.21-0.29), and 17.29 (95% CI: 12.01-24.86), respectively. The area under the summary receiver operating characteristic curve was 0.87 (95% CI: 0.84-0.90). The subgroup analyses based on research country (China vs. Japan), specimen type (plasma vs. serum), miRNAs profiling (single vs. multiple), and test method (screening vs. candidate; Taqman vs. SYBR) indicated no significant difference in the diagnostic accuracy of each subgroup. Collectively, our findings indicate that circulating miRNAs have significant potential to be used as noninvasive biomarkers for early detection of ESCC. Moreover, the subgroup analyses demonstrated the feasibility of using blood miRNAs as an ESCC diagnostic biomarker in Japanese and Chinese populations. Further, both plasma and serum are recommended as clinical specimens for miRNA detection. Further studies will be needed to validate these findings using larger numbers of patients.


Subject(s)
Asian People/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/diagnosis , Early Detection of Cancer/methods , Esophageal Neoplasms/diagnosis , MicroRNAs/genetics , Aged , Area Under Curve , Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/ethnology , Carcinoma, Squamous Cell/genetics , China , Esophageal Neoplasms/ethnology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma , Female , Humans , Japan , Male , MicroRNAs/blood , Middle Aged , Odds Ratio , Predictive Value of Tests , ROC Curve , Sensitivity and Specificity
14.
Br J Cancer ; 115(12): 1565-1574, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27855440

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Accurately identifying stage II CRC patients at risk for recurrence is an unmet clinical need. KCNQ1 was previously identified as a tumour suppressor gene and loss of expression was associated with poor survival in patients with CRC liver metastases. In this study the prognostic value of KCNQ1 in stage II and stage III colon cancer patients was examined. METHODS: KCNQ1 mRNA expression was assessed in 90 stage II colon cancer patients (AMC-AJCCII-90) using microarray gene expression data. Subsequently, KCNQ1 protein expression was evaluated in an independent cohort of 386 stage II and stage III colon cancer patients by immunohistochemistry of tissue microarrays. RESULTS: Low KCNQ1 mRNA expression in stage II microsatellite stable (MSS) colon cancers was associated with poor disease-free survival (DFS) (P=0.025). Loss of KCNQ1 protein expression from epithelial cells was strongly associated with poor DFS in stage II MSS (P<0.0001), stage III MSS (P=0.0001) and stage III microsatellite instable colon cancers (P=0.041). KCNQ1 seemed an independent prognostic value in addition to other high-risk parameters like angio-invasion, nodal stage and microsatellite instability-status. CONCLUSIONS: We conclude that KCNQ1 is a promising biomarker for prediction of disease recurrence and may aid stratification of patients with stage II MSS colon cancer for adjuvant chemotherapy.


Subject(s)
Colonic Neoplasms/genetics , KCNQ1 Potassium Channel/genetics , Neoplasm Recurrence, Local , Colonic Neoplasms/pathology , Humans , Prognosis , RNA, Messenger/genetics
15.
Cell Stem Cell ; 19(1): 38-51, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27292189

ABSTRACT

The intestinal stem cell niche provides cues that actively maintain gut homeostasis. Dysregulation of these cues may compromise intestinal regeneration upon tissue insult and/or promote tumor growth. Here, we identify secreted phospholipases A2 (sPLA2s) as stem cell niche factors with context-dependent functions in the digestive tract. We show that group IIA sPLA2, a known genetic modifier of mouse intestinal tumorigenesis, is expressed by Paneth cells in the small intestine, while group X sPLA2 is expressed by Paneth/goblet-like cells in the colon. During homeostasis, group IIA/X sPLA2s inhibit Wnt signaling through intracellular activation of Yap1. However, upon inflammation they are secreted into the intestinal lumen, where they promote prostaglandin synthesis and Wnt signaling. Genetic ablation of both sPLA2s improves recovery from inflammation but increases colon cancer susceptibility due to release of their homeostatic Wnt-inhibitory role. This "trade-off" effect suggests sPLA2s have important functions as genetic modifiers of inflammation and colon cancer.


Subject(s)
Group II Phospholipases A2/metabolism , Group X Phospholipases A2/metabolism , Homeostasis , Inflammation/pathology , Intestinal Neoplasms/enzymology , Intestinal Neoplasms/pathology , Intestines/pathology , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation , Cell Lineage , Dinoprostone/biosynthesis , Inflammation/enzymology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestinal Neoplasms/genetics , Intracellular Space/metabolism , Mice, Inbred C57BL , Organoids/metabolism , Paneth Cells/enzymology , Paneth Cells/pathology , Phosphoproteins/metabolism , Phosphorylation , Stem Cells/pathology , Wnt Signaling Pathway , YAP-Signaling Proteins
16.
Behav Anal Pract ; 8(2): 215-218, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27703922

ABSTRACT

The following paper details the implementation of a program to address the high-risk physical aggression and property destruction behavior of an adult male with an autism spectrum disorder (ASD) and severe aggressive behavior. A task analysis (TA) and forward chaining were combined with a stimulus fading procedure to allow the subject to be able to participate in van rides when prompted with no displays of aggressive or self-injurious behavior. A follow-up probe completed at 1-year post intervention demonstrated the maintenance of the gains that were made during treatment.

17.
Asian Pac J Cancer Prev ; 15(21): 9417-21, 2014.
Article in English | MEDLINE | ID: mdl-25422234

ABSTRACT

BACKGROUND: Esophageal cancer is one of the most frequently occurring malignancies and the seventh leading cause of cancer-related deaths in the world. The esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer worldwide. MATERIALS AND METHODS: Our goal in this study was to detect phospholipase A2 Group IIA (PLA2G2A) and cyclooxygenase-2 (COX-2) immuno-expression in ESCC in a high- risk population in China. RESULTS: Positive expression of PLA2G2A protein was observed in 57.2% (166/290) of the cases, while COX-2 was found in 257 of 290 samples (88.6%), both PLA2G2A and COX-2 being expressed in 153 cases (52.8%), with a significant agreement (Kappa=0.091, p=0.031).Overexpression of PLA2G2A was significantly correlated with the depth of invasion (p=0.001). Co-expression of PLA2G2A and COX-2 not only significantly correlated with the depth of invasion (p=0.004) but also with TNM stage (p=0.04). CONCLUSIONS: Our results showed that in patients with ESCC, PLA2G2A overexpression and PLA2G2A co-expression with COX-2 is significantly correlated with advanced stage. The biological role and pathophysiologic regulation of PLA2G2A and COX-2 overexpression in ESCC deserve further investigation.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/pathology , Cyclooxygenase 2/metabolism , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/pathology , Group II Phospholipases A2/metabolism , Adult , Aged , Biomarkers, Tumor/genetics , Biopsy, Needle , Case-Control Studies , Chi-Square Distribution , China , Esophageal Squamous Cell Carcinoma , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Staging , Prognosis , Sensitivity and Specificity
18.
Asian Pac J Cancer Prev ; 15(4): 1797-802, 2014.
Article in English | MEDLINE | ID: mdl-24641411

ABSTRACT

BACKGROUND: The prostaglandin-endoperoxide synthase 2 (PTGS2) and phospholipase A2 group IIA (PLA2G2A) genes encode enzymes that are involved in arachidonic acid and prostaglandin biosynthesis. Dysregulation of both genes is associated with inflammation and carcinogenesis, including esophageal squamous cell carcinoma (ESCC). We therefore hypothesized that there is an association between single nucleotide polymorphisms (SNPs) in these genes and susceptibility to ESCC. METHODS: We performed a gene-wide tag SNP-based association study to examine the association of SNPs in PTGS2 and PLA2G2A with ESCC in 269 patients and 269 healthy controls from Taihangshan Mountain, Henan and Hebei Provinces, the rural area of China which has the highest incidence of esophageal cancer in the world. Thirteen tag SNPs in PLA2G2A and 4 functional SNPs in PTGS2 were selected and genotyped using a high-throughput Mass Array genotyping platform. RESULTS: We found a modest increased risk of ESCC in subjects with the PTGS2 rs12042763 AA genotype (OR=1.23; 95% CI, 1.00- 3.04) compared with genotype GG. For PLA2G2A, a decreased risk of ESCC was observed in subjects with the rs11677 CT (OR=0.51, 95%CI, 0.29-0.85) or TT genotype (OR=0.51, 95%CI, 0.17-0.96) or the T carriers (CT+TT) (OR=0.52, 95%CI, 0.31-0.85) when compared with the CC genotype. Also for PLA2G2A, rs2236771 C allele carriers were more frequent in the control group (P=0.02). Subjects with the GC (OR=0.55, 95%CI, 0.33-0.93) or CC genotype (OR=0.38, 95% CI, 0.16-0.94) or the C carriers (GC+CC) (OR=0.52, 95%CI, 0.32- 0.85) showed a negative association with ESCC susceptibility. CONCLUSIONS: Our results suggest that PTGS2 and PLA2G2A gene polymorphisms may modify the risk of ESCC development.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cyclooxygenase 2/genetics , Esophageal Neoplasms/genetics , Group II Phospholipases A2/genetics , Base Sequence , Case-Control Studies , Esophageal Squamous Cell Carcinoma , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk , Sequence Analysis, DNA
19.
PLoS Genet ; 8(11): e1003034, 2012.
Article in English | MEDLINE | ID: mdl-23133403

ABSTRACT

Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromosome Aberrations , DNA Helicases/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Alleles , Animals , Chromosomal Instability , DNA Helicases/metabolism , DNA Replication , Disease Models, Animal , Genes, Dominant , Humans , Mice , Minichromosome Maintenance Complex Component 4 , Mutation , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Reticulocytes/cytology , Reticulocytes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
20.
Nucleic Acids Res ; 40(9): 3822-33, 2012 May.
Article in English | MEDLINE | ID: mdl-22241771

ABSTRACT

Insertional mutagenesis screens in mice are used to identify individual genes that drive tumor formation. In these screens, candidate cancer genes are identified if their genomic location is proximal to a common insertion site (CIS) defined by high rates of transposon or retroviral insertions in a given genomic window. In this article, we describe a new method for defining CISs based on a Poisson distribution, the Poisson Regression Insertion Model, and show that this new method is an improvement over previously described methods. We also describe a modification of the method that can identify pairs and higher orders of co-occurring common insertion sites. We apply these methods to two data sets, one generated in a transposon-based screen for gastrointestinal tract cancer genes and another based on the set of retroviral insertions in the Retroviral Tagged Cancer Gene Database. We show that the new methods identify more relevant candidate genes and candidate gene pairs than found using previous methods. Identification of the biologically relevant set of mutations that occur in a single cell and cause tumor progression will aid in the rational design of single and combinatorial therapies in the upcoming age of personalized cancer therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Transposable Elements , Genes, Neoplasm , Mutagenesis, Insertional , Retroviridae/genetics , Animals , Gastrointestinal Neoplasms/genetics , Humans , Mice , Monte Carlo Method , Poisson Distribution , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...