Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36260504

ABSTRACT

In the framework of the research project called fitomatics, we have isolated and characterized a bacterial plant-endophyte from the rhizomes of Iris germanica, hereafter referred to as strain FIT81T. The bacterium is Gram negative, rod-shaped with lophotrichous flagella, and catalase- and oxidase-positive. The optimal growth temperature of strain FIT81T is 28 °C, although it can grow within a temperature range of 4-32 °C. The pH growth tolerance ranges between pH 5 and 10, and it tolerates 4% (w/v) NaCl. A 16S rRNA phylogenetic analysis positioned strain FIT81T within the genus Pseudomonas, and multilocus sequence analysis revealed that Pseudomonas gozinkensis IzPS32dT, Pseudomonas glycinae MS586T, Pseudomonas allokribbensis IzPS23T, 'Pseudomonas kribbensis' 46-2 and Pseudomonas koreensis PS9-14T are the top five most closely related species, which were selected for further genome-to-genome comparisons, as well as for physiological and chemotaxonomic characterization. The genome size of strain FIT81T is 6 492 796 base-pairs long, with 60.6 mol% of G+C content. Average nucleotide identity and digital DNA-DNA hybridization analyses yielded values of 93.6 and 56.1%, respectively, when the FIT81T genome was compared to that of the closest type strain P. gozinkensis IzPS32dT. Taken together, the obtained genomic, physiologic and chemotaxonomic data indicate that strain FIT81T is different from its closest relative species, which lead us to suggest that it is a novel species to be included in the list of type strains with the name Pseudomonas fitomaticsae sp. nov. (FIT81T=CECT 30374T=DSM 112699T).


Subject(s)
Sodium Chloride , Bacterial Typing Techniques , Base Composition , Catalase/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleotides , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
2.
Environ Sci Pollut Res Int ; 24(7): 6492-6503, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28074365

ABSTRACT

The number of cytostatic drugs used in cancer treatments is wide and increases every year; therefore, tools have been developed to predict their concentration in the environment to prioritize those for monitoring studies. In the present study, the predicted environmental concentrations (PECs) were calculated according to consumption data in Catalonia (NE Spain) for 2014. According to PECs and to the most widely reported compounds, 19 cytostatics were monitored in two sampling campaigns performed along the Besòs River. A total of seven drugs were detected at levels between 0.5 and 656 ng L-1. PEC and measured environmental concentrations (MECs) were compared in order to validate PECs. The PEC/MEC ratio presented a good agreement between predicted and measured concentrations confirming the PEC estimations. Mycophenolic acid, prioritized as the compound with the highest PEC, was detected at the highest concentrations (8.5-656 ng L-1) but showed no risk for aquatic organisms (risk quotient <1) considering acute toxicity tests performed in Daphnia magna.


Subject(s)
Cytostatic Agents/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/drug effects , Cytostatic Agents/toxicity , Daphnia/drug effects , Humans , Predictive Value of Tests , Risk Assessment , Spain , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...