Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(7): e0301680, 2024.
Article in English | MEDLINE | ID: mdl-39046949

ABSTRACT

The development of high molecular weight (HMW) genomic DNA (gDNA) extraction protocols for non-model species is essential to fully exploit long-read sequencing technologies in order to generate genome assemblies that can help answer complex questions about these organisms. Obtaining enough high-quality HMW gDNA can be challenging for these species, especially for tissues rich in polysaccharides such as biomass from species within the Botryococcus genus. The existing protocols based on column-based DNA extraction and biochemical lysis kits can be inefficient and may not be useful due to variations in biomass polysaccharide content. We developed an optimized protocol for the efficient extraction of HMW gDNA from Botryococcus biomass for use in long-read sequencing technologies. The protocol utilized an initial wash step with sorbitol to remove polysaccharides and yielded HMW gDNA concentrations up to 220 ng/µL with high purity. We then demonstrated the suitability of the HMW gDNA isolated from this protocol for long-read sequencing on the Oxford Nanopore PromethION platform for three Botryococcus species. Our protocol can be used as a standard for efficient HMW gDNA extraction in microalgae rich in polysaccharides and may be adapted for other challenging species.


Subject(s)
Biomass , Molecular Weight , DNA, Bacterial/isolation & purification , DNA, Bacterial/genetics , Chlorophyceae/genetics , Sequence Analysis, DNA/methods , Genome, Bacterial , Genomics/methods
2.
Bio Protoc ; 7(16): e2508, 2017 Aug 20.
Article in English | MEDLINE | ID: mdl-34541171

ABSTRACT

We analyzed the reactive oxygen species (ROS) accumulation in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. A staining assay using the fluorescent dye CellROX Green was used. CellROX Green is a fluorogenic probe used for measuring oxidative stress in live cells. The dye is weakly fluorescent inside cells in a reduced state but exhibits bright green photostable fluorescence upon oxidation by ROS and subsequent binding to DNA. The large amount of liquid hydrocarbons produced and excreted by B. braunii, creates a highly hydrophobic extracellular environment that makes difficult to study short times defense responses on this microalga. The procedure developed here allowed us to detect ROS in this microalga even within a short period of time (in minutes) after treatment of cells with different stress inducers.

3.
PeerJ ; 4: e2748, 2016.
Article in English | MEDLINE | ID: mdl-27957393

ABSTRACT

Plants react to biotic and abiotic stresses with a variety of responses including the production of reactive oxygen species (ROS), which may result in programmed cell death (PCD). The mechanisms underlying ROS production and PCD have not been well studied in microalgae. Here, we analyzed ROS accumulation, biomass accumulation, and hydrocarbon production in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. We also identified and cloned a single cDNA for the B. braunii ortholog of the Arabidopsis gene defender against cell death 1 (DAD1), a gene that is directly involved in PCD regulation. The function of B. braunii DAD1 was assessed by a complementation assay of the yeast knockout line of the DAD1 ortholog, oligosaccharyl transferase 2. Additionally, we found that DAD1 transcription was induced in response to SA at short times. These results suggest that B. braunii responds to stresses by mechanisms similar to those in land plants and other  organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...