Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 7(1): 124, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29970924

ABSTRACT

Capnocytophaga canimorsus is a dog oral commensal bacterium that causes rare but life-threatening generalized infections in humans who have been in contact with its animal hosts. Two other dog commensals, Capnocytophaga canis and Capnocytophaga cynodegmi, cause rare, mild local infections. To date, nine capsular serovars have been described in C. canimorsus. Here, we serotyped 112 strains of Capnocytophaga spp. isolated from human infections. The C. canimorsus strains (86 of 96, 89.6%) belonged to serovars A, B, or C with relative frequencies of approximately 30% for each serovar. The high prevalence of the A, B, and C serovars in strains isolated from humans, compared to the previously described low prevalence of these serovars among dog isolates (7.6%), confirms that these three serovars are more virulent to humans than other serovars and suggests that the low incidence of disease may be linked to the low prevalence of the A, B, and C serovars in dogs. We serotyped six strains of C. canis and ten strains of C. cynodegmi and, surprisingly, found one C. canis and three C. cynodegmi strains to be of capsular serovar B. This observation prompted us to test 34 dog-isolated C. canis and 16 dog-isolated C. cynodegmi strains. We found four C. canis strains belonging to serovar A and one belonging to serovar F. In contrast, no dog-isolated C. cynodegmi strain could be typed with the available antisera. This work demonstrates that virulence-associated capsular polysaccharides (A, B, and C) are not specific to the C. canimorsus species.


Subject(s)
Capnocytophaga/classification , Gram-Negative Bacterial Infections/microbiology , Animals , Antigens, Bacterial/immunology , Bacterial Typing Techniques , Capnocytophaga/immunology , Capnocytophaga/isolation & purification , Capnocytophaga/pathogenicity , Dog Diseases/immunology , Dog Diseases/microbiology , Dogs , Gram-Negative Bacterial Infections/immunology , Humans , Phylogeny , Polymerase Chain Reaction , Polysaccharides, Bacterial/immunology , RNA, Ribosomal, 16S/genetics , Serogroup , Virulence/genetics , Virulence/immunology
3.
mBio ; 7(5)2016 10 25.
Article in English | MEDLINE | ID: mdl-27795390

ABSTRACT

Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2 We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. IMPORTANCE: Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To date, the underlying mechanism of lipoprotein transport is unknown. We show for the first time that Bacteroidetes surface lipoproteins share an N-terminal signal that drives surface localization. The localization and overall negative charge of the lipoprotein export signal (LES) are crucial for its role. Overall, our findings provide the first evidence that Bacteroidetes are endowed with a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane.


Subject(s)
Capnocytophaga/genetics , Capnocytophaga/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Sorting Signals , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Computational Biology , DNA Mutational Analysis , Flavobacterium/genetics , Flavobacterium/metabolism , Protein Transport
5.
Emerg Microbes Infect ; 4(8): e48, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26421271

ABSTRACT

Capnocytophaga canimorsus are gram-negative bacteria living as commensals in the mouth of dogs and cats. C. canimorsus cause rare but life-threatening generalized infections in humans that have been in contact with a dog or a cat. Over the last years we collected 105 C. canimorsus strains from different geographical origins and from severe human infections or healthy dogs. All these strains were analyzed by 16S rDNA sequencing and a phylogenetic tree revealed two main groups of bacteria instead of one with no relation to the geographical origin. This branching was confirmed by the whole-genome sequencing of 10 strains, supporting the evidence of a new Capnocytophaga species in dogs. Interestingly, 19 out of 19 C. canimorsus strains isolated from human infections belonged to the same species. Furthermore, most strains from this species could grow in heat-inactivated human serum (HIHS) (40/46 tested), deglycosylate IgM (48/66) and were cytochrome-oxidase positive (60/66) while most strains from the other species could not grow in HIHS (22/23 tested), could not deglycosylate IgM (33/34) and were cytochrome-oxidase negative (33/34). Here, we propose to call Capnocytophaga canis (Latin: dog) the novel, presumably less virulent dog-hosted Capnocytophaga species and to keep the name C. canimorsus for the species including human pathogens.


Subject(s)
Capnocytophaga/classification , DNA, Ribosomal/chemistry , Dog Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , RNA, Ribosomal, 16S/genetics , Animals , Capnocytophaga/enzymology , Capnocytophaga/genetics , Capnocytophaga/pathogenicity , Cats , Consensus Sequence , DNA, Ribosomal/isolation & purification , Dog Diseases/transmission , Dogs , Electron Transport Complex IV/metabolism , Genome, Bacterial/genetics , Genome-Wide Association Study , Gram-Negative Bacterial Infections/transmission , Humans , Immunoglobulin M/metabolism , Phylogeny , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Polysaccharides/metabolism , Saliva/microbiology , Species Specificity
6.
mBio ; 6(2): e02507, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25736888

ABSTRACT

UNLABELLED: Capnocytophaga canimorsus is known to form two kinds of cells on blood agar plates (coccoid and bacillary), evoking phase variation. When grown in coculture with animal cells these bacteria appeared only as bacilli, but in the presence of vancomycin they were round, indicating that coccoid shapes likely result from weakening of the peptidoglycan layer. Polysaccharide utilization locus 5 (PUL5) and sialidase mutant bacteria, unable to retrieve glycans from glycoproteins, grew less than wild-type bacteria and also appeared polymorphic unless GlcNAc was added, suggesting that C. canimorsus is unable to synthesize GlcNAc, an essential component of peptidoglycan. Accordingly, a genome analysis was conducted and revealed that C. canimorsus strain 5 lacks the GlmM and GlmU enzymes, which convert glucosamine into GlcNAc. Expression of the Escherichia coli GlmM together with the acetyltransferase domain of GlmU allowed PUL5 mutant bacteria to grow normally, indicating that C. canimorsus is a natural auxotroph that relies on GlcNAc harvested from the host N-glycoproteins for peptidoglycan synthesis. Mucin, a heavily O-glycosylated protein abundant in saliva, also rescued growth and the shape of PUL5 mutant bacteria. Utilization of mucin was found to depend on Muc, a Sus-like system encoded by PUL9. Contrary to all known PUL-encoded systems, Muc cleaves peptide bonds of mucin rather than glycosidic linkages. Thus, C. canimorsus has adapted to build its peptidoglycan from the glycan-rich dog's mouth glycoproteins. IMPORTANCE: Capnocytophaga canimorsus is a bacterium that lives as a commensal in the dog mouth and causes severe infections in humans. In vitro, it forms two kinds of cells (coccoid and bacillary), evoking phase variation. Here, we show that cell rounding likely results from weakening of the peptidoglycan layer due to a shortage of N-acetylglucosamine (GlcNAc). C. canimorsus cannot synthesize GlcNAc because of the lack of key enzymes. In its niche, the dog mouth, C. canimorsus retrieves GlcNAc by foraging glycans from salivary mucin and N-linked glycoproteins through two different apparatuses, Muc and Gpd, both of which are related to the Bacteroides starch utilization system. The Muc system is peculiar in the sense that the enzyme of the complex is a protease and not a glycosylhydrolase, as it cleaves peptide bonds in order to capture glycan chains. This study provides a molecular genetic demonstration for the complex adaptation of C. canimorsus to its ecological niche, the oral cavity of dogs.


Subject(s)
Adaptation, Biological , Capnocytophaga/genetics , Capnocytophaga/metabolism , Carbohydrate Metabolism , Metabolic Networks and Pathways/genetics , Mouth/microbiology , Acetylglucosamine/metabolism , Animals , Capnocytophaga/cytology , Capnocytophaga/growth & development , Dogs , Glucosamine/metabolism , Peptidoglycan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...