Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 196(3): 763-779, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34259906

ABSTRACT

Environmental change through habitat fragmentation and urbanization drives biodiversity loss in the Neotropics at an alarming rate. Some individuals and species confined to habitat fragments may develop phenotypic adjustments that allow populations to persist, even in landscapes made harsh by human activities. Behavioral and morphological adjustments may enhance a population's ability to cope with anthropogenic hazards. We examined potential differences in the behavioral and morphological phenotype of populations of the neotropical Wedge-billed Woodcreeper (Glyphorynchus spirurus)-an understory forest specialist insectivorous bird-between populations from urban fragmented forests and continuous preserved forests. We evaluated exploratory behavior and morphological traits using generalized linear models and linear discriminant analysis to quantify phenotypical differences among populations. We used failure time analysis to compare latency to explore and move during exploration in a Novel Environment Test (NET). Our analyses detected differences in certain movement behaviors (latencies to move during NET), indicating that individuals from fragmented forests are slow explorers in relation to individuals from the continuous forest. We also found shorter tarsi and tails in the fragmented forest population which were attributed to an overall reduction in body size in these populations. Our results suggest that environmental change driven by fragmentation in an urban landscape is causing population differentiation, but we cannot ascribe observed variations to evolutionary processes only, as the differences observed may be explained by other processes too. However, we suggest that phenotypic differences may be aiding this small understory forest specialist to persist in an urban fragmented landscape.


Subject(s)
Ecosystem , Forests , Animals , Biodiversity , Biological Variation, Population , Human Activities , Humans
2.
PLoS One ; 12(1): e0170493, 2017.
Article in English | MEDLINE | ID: mdl-28107517

ABSTRACT

Dispersal is a biological process performed in three stages: emigration, transfer and immigration. Intra-specific variation on dispersal behavior, such as sex-bias, is very common in nature, particularly in birds and mammals. However, dispersal is difficult to measure in the field and many hypotheses concerning the causes of sex-biased dispersal remain without empirical confirmation. An important limitation of most empirical studies is that inferences about sex-biased dispersal are based only on emigration proneness or immigration success data. Thus, we still do not know whether sex-biased immigration in fragmented landscapes occurs during emigration, transfer or in both stages. We conducted translocation and radiotracking experiments to assess i) whether inter-patch dispersal movements of a rainforest bird (Pyriglena leucoptera) is sex-biased and ii) how dispersal stages and the perceptual range of the individuals are integrated to generate dispersal patterns. Our results showed that inter-patch dispersal is sex-biased at all stages for P. leucoptera, as females not only exhibit a higher emigration propensity but are subjected to a lower risk of predation when moving through the matrix. Moreover, our data support a perceptual range of 80 m and our results showed that dispersal success decreases considerably when inter-patch distances exceeds this perceptual range. In this case, birds have a higher probability of travelling over longer routes and, as a consequence, the risk of predation increases, specially for males. Overall, results supported that assuming dispersal as a single-stage process to describe dispersal behavior may be misleading. In this way, our study advanced our understanding of processes and patterns related to inter-patch dispersal of neotropical forest birds, shedding light on potential implications for population dynamics and for the management of fragmented landscapes.


Subject(s)
Animal Migration , Passeriformes , Animals , Brazil , Conservation of Natural Resources , Female , Male , Mortality , Population Dynamics , Rainforest , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...