Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(14): 9826-9835, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34232034

ABSTRACT

Ceramic water filters (CWFs) are produced globally using local clay sources and can effectively remove bacterial pathogens during point-of-use water treatment. The ceramic production process involves firing clay mixed with burnout material at temperatures of 800-1100 °C, which induces mineralogical changes leading to increased arsenic (As) leaching from CWF material compared to source clay. Unfired clay and fired CWFs from Cambodia, Canada, and Mexico, CWF from Laos, and test-fired clay from the United States were analyzed to determine the extent of As leaching from CWFs that range in As (<1 to 16 mg kg-1) and iron (Fe) (0.6 to 5%) content. Deionized water, NaOH, HCl, and oxalate extractions showed that firing increased As solubility and decreased Fe solubility compared to unfired clay, with up to 8 mg kg-1 of water-soluble As in Cambodian CWFs. X-ray absorption spectra of the Cambodian clay and CWF showed a decrease in the Fe-O distance from 2.01 to 1.91 Å and decreased Fe coordination number from 6.3 to 4.6 after firing, indicating a decrease in Fe-O coordination. Arsenic(V) was the dominant species in Cambodia clay and CWF, existing primarily as a surface complex with average As-Fe distance of 3.28 Å in clay while in CWF As was either an outer-sphere As(V) phase or a discrete arsenate phase with no significant As-Fe scattering contribution within the resolution of the data. Improved understanding of molecular-scale processes that cause increased As leaching from CWFs provides a basis for assessing As leaching potential prior to CWF factory capital investment as well as engineered solutions (e.g., modified firing temperature, material amendments, and leaching prior to distribution) to mitigate As exposure from CWFs.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Ceramics , Iron , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...