Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 15: 126, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24521263

ABSTRACT

BACKGROUND: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. RESULTS: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs.We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. CONCLUSIONS: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.


Subject(s)
Pisum sativum/genetics , Polymorphism, Single Nucleotide , Chromosome Mapping , Contig Mapping , Genes, Plant , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
2.
FEMS Microbiol Ecol ; 48(3): 425-35, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-19712311

ABSTRACT

The impact of organic amendment (sewage sludge or waste water) used to fertilize agricultural soils was estimated on the atrazine-degrading activity, the atrazine-degrading genetic potential and the bacterial community structure of soils continuously cropped with corn. Long-term application of organic amendment did not modify atrazine-mineralizing activity, which was found to essentially depend on the soil type. It also did not modify atrazine-degrading genetic potential estimated by quantitative PCR targeting atzA, B and C genes, which was shown to depend on soil type. The structure of soil bacterial community determined by RISA fingerprinting was significantly affected by organic amendment. These results showed that modification of the structure of soil bacterial community in response to organic amendment is not necessarily accompanied by a modification of atrazine-degrading genetic potential or activity. In addition, these results revealed that different soils showing similar atrazine-degrading genetic potentials may exhibit different atrazine-degrading activities.


Subject(s)
Atrazine/metabolism , Bacteria/genetics , Bacteria/metabolism , Soil Microbiology , Bacterial Proteins/genetics , Biodiversity , Biotransformation , DNA Fingerprinting/methods , DNA, Bacterial/genetics , France , Polymerase Chain Reaction/methods , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...