Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1346021, 2024.
Article in English | MEDLINE | ID: mdl-38374922

ABSTRACT

Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a rapid and acute infection of the central nervous system with a fatal outcome in >97% of cases. Due to the infrequent report of cases and diagnostic gaps that hinder the possibility of recovering clinic isolates, studies related to pathogenesis of the disease are scarce. However, the secretion of cytolytic molecules has been proposed as a factor involved in the progression of the infection. Several of these molecules could be included in extracellular vesicles (EVs), making them potential virulence factors and even modulators of the immune response in this infection. In this work, we evaluated the immunomodulatory effect of EVs secreted by two clinic isolates of Naegleria fowleri using in vitro models. For this purpose, characterization analyses between EVs produced by both isolates were first performed, for subsequent gene transcription analyses post incubation of these vesicles with primary cultures from mouse cell microglia and BV-2 cells. Analyses of morphological changes induced in primary culture microglia cells by the vesicles were also included, as well as the determination of the presence of nucleic acids of N. fowleri in the EV fractions. Results revealed increased expression of NOS, proinflammatory cytokines IL-6, TNF-α, and IL-23, and the regulatory cytokine IL-10 in primary cultures of microglia, as well as increased expression of NOS and IL-13 in BV-2 cells. Morphologic changes from homeostatic microglia, with small cellular body and long processes to a more amoeboid morphology were also observed after the incubation of these cells with EVs. Regarding the presence of nucleic acids, specific Naegleria fowleri DNA that could be amplified using both conventional and qPCR was confirmed in the EV fractions. Altogether, these results confirm the immunomodulatory effects of EVs of Naegleria fowleri over microglial cells and suggest a potential role of these vesicles as biomarkers of primary acute meningoencephalitis.

2.
Front Immunol ; 14: 1215913, 2023.
Article in English | MEDLINE | ID: mdl-37600828

ABSTRACT

American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite Trypanosoma cruzi and is characterized by the presence of cardiac or gastrointestinal symptoms in a large number of patients during the chronic phase of the disease. Although the origin of the symptoms is not clear, several mechanisms have been described involving factors related to T. cruzi and the host immune response. In this sense, the extracellular vesicles (EVs) secreted by the parasite and the immune complexes (ICs) formed after their recognition by host IgGs (EVs-IgGs) may play an important role in the immune response during infection. The aim of the present work is to elucidate the modulation of the immune response exerted by EVs and the ICs they form by analyzing the variation in the subpopulations of small and large peritoneal macrophages after intraperitoneal inoculation in mice and to evaluate the role of the sialylation of the host IgGs in this immunomodulation. Both macrophage subpopulations were purified and subjected to cytokine expression analysis by RT-qPCR. The results showed an increase in the small peritoneal macrophage subpopulation after intraperitoneal injection of parasite EVs, but a greater increase in this subpopulation was observed when sialylated and non-sialylated ICs were injected, which was similar to inoculation with the trypomastigote stage of the parasite. The cytokine expression results showed the ability of both subpopulations to express inflammatory and non-inflammatory cytokines. These results suggest the role of free EVs in the acute phase of the disease and the possible role of immune complexes in the immune response in the chronic phase of the disease, when the levels of antibodies against the parasite allow the formation of immune complexes. The differential expression of interleukins showed after the inoculation of immune complexes formed with sialylated and non-sialylated IgGs and the interleukins expression induced by EVs, demonstrates that the IgG glycosilation is involved in the type of immune response that dominates in each of the phases of the Chagas disease.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Animals , Mice , Antigen-Antibody Complex , Macrophages, Peritoneal , Cytokines
4.
Sci Rep ; 13(1): 7618, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165081

ABSTRACT

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. The disease has an acute and a chronic phase in which approximately 30% of the chronic patients suffer from heart disease and/or gastrointestinal symptoms. The pathogenesis of the disease is multifactorial and involves the virulence of the strains, immunological factors and extracellular vesicles (EV) shed by the parasite which participate in cell-cell communication and evasion of the immune response. In this work, we present a transcriptomic analysis of cells stimulated with EV of the trypomastigote stage of T. cruzi. Results after EV-cell incubation revealed 322 differentially expressed genes (168 were upregulated and 154 were downregulated). In this regard, the overexpression of genes related to ubiquitin-related processes (Ube2C, SUMO1 and SUMO2) is highlighted. Moreover, the expression of Rho-GTPases (RhoA, Rac1 and Cdc42) after the interaction was analyzed, revealing a downregulation of the analyzed genes after 4 h of interaction. Finally, a protective role of EV over apoptosis is suggested, as relative values of cells in early and late apoptosis were significantly lower in EV-treated cells, which also showed increased CSNK1G1 expression. These results contribute to a better understanding of the EV-cell interaction and support the role of EV as virulence factors.


Subject(s)
Chagas Disease , Extracellular Vesicles , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Ubiquitin/metabolism , Chagas Disease/parasitology , Extracellular Vesicles/metabolism , Signal Transduction
5.
Biology (Basel) ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-36101365

ABSTRACT

Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.

6.
Insects ; 13(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35735893

ABSTRACT

Continuous improvements in morphological and histochemical analyses of Apis mellifera could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on the abdomen of worker bees: (i) Micro-computed tomography (Micro-CT), which allows the identification of small-scale structures (micrometers) with adequate/optimal resolution and avoids sample damage and, (ii) histochemical multi-staining with Periodic Acid-Schiff-Alcian blue, Lactophenol-Saphranin O and pentachrome staining to precisely characterize the histological structures of the midgut and hindgut. Micro-CT allowed high-resolution imaging of anatomical structures of the honeybee abdomen with particular emphasis on the proventriculus and pyloric valves, as well as the connection of the sting apparatus with the terminal abdominal ganglia. Furthermore, the histochemical analyses have allowed for the first-time description of ventricular telocytes in honeybees, a cell type located underneath the midgut epithelium characterized by thin and long cytoplasmic projections called telopodes. Overall, the analysis of these images could help the detailed anatomical description of the cryptic structures of honeybees and also the characterization of changes due to abiotic or biotic stress conditions.

7.
Front Immunol ; 12: 713697, 2021.
Article in English | MEDLINE | ID: mdl-34504495

ABSTRACT

The absence of the mouse cell surface receptor CD38 in Cd38-/- mice suggests that this receptor acts as a positive regulator of inflammatory and autoimmune responses. Here, we report that, in the context of the chronic graft-versus-host disease (cGVHD) lupus inducible model, the transfer of B6.C-H2bm12/KhEg(bm12) spleen cells into co-isogenic Cd38-/- B6 mice causes milder lupus-like autoimmunity with lower levels of anti-ssDNA autoantibodies than the transfer of bm12 spleen cells into WT B6 mice. In addition, significantly lower percentages of Tfh cells, as well as GC B cells, plasma cells, and T-bet+CD11chi B cells, were observed in Cd38-/- mice than in WT mice, while the expansion of Treg cells and Tfr cells was normal, suggesting that the ability of Cd38-/- B cells to respond to allogeneic help from bm12 CD4+ T cells is greatly diminished. The frequencies of T-bet+CD11chi B cells, which are considered the precursors of the autoantibody-secreting cells, correlate with anti-ssDNA autoantibody serum levels, IL-27, and sCD40L. Proteomics profiling of the spleens from WT cGVHD mice reflects a STAT1-driven type I IFN signature, which is absent in Cd38-/- cGVHD mice. Kidney, spleen, and liver inflammation was mild and resolved faster in Cd38-/- cGVHD mice than in WT cGVHD mice. We conclude that CD38 in B cells functions as a modulator receptor that controls autoimmune responses.


Subject(s)
ADP-ribosyl Cyclase 1/deficiency , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Susceptibility , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Membrane Glycoproteins/deficiency , Adoptive Transfer , Animals , Autoantibodies/blood , Autoantibodies/immunology , Autoimmunity , Biomarkers , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/therapy , Immunophenotyping , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocyte Count , Mice , Mice, Knockout , Organ Specificity , Proteome , Proteomics/methods , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
8.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068436

ABSTRACT

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote's EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.


Subject(s)
Chagas Disease/metabolism , Extracellular Vesicles/metabolism , Life Cycle Stages , Proteome/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Chagas Disease/parasitology , Chlorocebus aethiops , Extracellular Vesicles/parasitology , Host-Parasite Interactions , Male , Mice , Mice, Inbred BALB C , Proteome/analysis , Vero Cells
9.
PLoS Negl Trop Dis ; 15(4): e0009322, 2021 04.
Article in English | MEDLINE | ID: mdl-33830991

ABSTRACT

BACKGROUND: Chagas disease is the third most important neglected tropical disease. There is no vaccine available, and only two drugs are generally prescribed for the treatment, both of which with a wide range of side effects. Our study of T. cruzi PHBs revealed a pleiotropic function in different stages of the parasite, participating actively in the transformation of the non-infective replicative epimastigote form into metacyclic trypomastigotes and also in the multiplication of intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDINGS: To obtain and confirm our results, we applied several tools and techniques such as electron microscopy, immuno-electron microscopy, bioinformatics analysis and molecular biology. We transfected T. cruzi clones with the PHB genes, in order to overexpress the proteins and performed a CRISPR/Cas9 disruption to obtain partially silenced PHB1 parasites or completely silenced PHB2 parasites. The function of these proteins was also studied in the biology of the parasite, specifically in the transformation rate from non-infective forms to the metacyclic infective forms, and in their capacity of intracellular multiplication. CONCLUSION/SIGNIFICANCE: This research expands our understanding of the functions of PHBs in the life cycle of the parasite. It also highlights the protective role of prohibitins against ROS and reveals that the absence of PHB2 has a lethal effect on the parasite, a fact that could support the consideration of this protein as a possible target for therapeutic action.


Subject(s)
Chagas Disease/parasitology , Life Cycle Stages , Repressor Proteins/metabolism , Trypanosoma cruzi/enzymology , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Computer Simulation , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Prohibitins , Protozoan Proteins/analysis , Rats , Rats, Wistar , Repressor Proteins/genetics , Trypanosoma cruzi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...