Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35053440

ABSTRACT

Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.

2.
J Clin Pathol ; 75(6): 426-430, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33766955

ABSTRACT

The dynamics of metastatic evolution in clear cell renal cell carcinoma (ccRCC) are complex. We report a case study where tumour heterogeneity resulting from clonal evolution is a frequent feature and could play a role in metastatic dissemination.We used an integrative multiomics strategy combining genomic and transcriptomic data to classify fourteen specimens from spatially different areas of a kidney tumour and three non-primary sites including a vein thrombus and two adrenal metastases.All sites were heterogeneous and polyclonal, each tumour site containing two different aggressive subclonal populations, with differentially expressed genes implicated in distinct biological functions. These are rare primary metastatic samples prior to any medical treatment, where we showed a multiple metastatic seeding of two subclonal populations.Multiple interdependent lineages could be the source of metastatic heterogeneity in ccRCC. By sampling metastases, patients with resistance to therapies could benefit a combination of targeted therapies based on more than one aggressive clone.


Subject(s)
Adrenal Gland Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Clone Cells/pathology , Genomics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Neoplasm Metastasis
3.
Maturitas ; 141: 9-19, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33036707

ABSTRACT

Ovarian deficiency, including premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR), represents one of the main causes of female infertility. POI is a genetically heterogeneous condition but current understanding of its genetic basis is far from complete, with the cause remaining unknown in the majority of patients. The genes that regulate DOR have been reported but the genetic basis of DOR has not been explored in depth. Both conditions are likely to lie along a continuum of degrees of decrease in ovarian reserve. We performed genomic analysis via whole exome sequencing (WES) followed by in silico analyses and functional experiments to investigate the genetic cause of ovarian deficiency in ten affected women. We achieved diagnoses for three of them, including the identification of novel variants in STAG3, GDF9, and FANCM. We identified potentially causative FSHR variants in another patient. This is the second report of biallelic GDF9 and FANCM variants, and, combined with functional support, validates these genes as bone fide autosomal recessive "POI genes". We also identified new candidate genes, NRIP1, XPO1, and MACF1. These genes have been linked to ovarian function in mouse, pig, and zebrafish respectively, but never in humans. In the case of NRIP1, we provide functional support for the deleterious nature of the variant via SUMOylation and luciferase/ß-galactosidase reporter assays. Our study provides multiple insights into the genetic basis of POI/DOR. We have further elucidated the involvement of GDF9, FANCM, STAG3 and FSHR in POI pathogenesis, and propose new candidate genes, NRIP1, XPO1, and MACF1, which should be the focus of future studies.


Subject(s)
Karyopherins/genetics , Microfilament Proteins/genetics , Nuclear Receptor Interacting Protein 1/genetics , Ovarian Reserve/genetics , Primary Ovarian Insufficiency/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Adolescent , Cell Cycle Proteins/genetics , DNA Helicases/genetics , Female , Genomics , Growth Differentiation Factor 9/genetics , Humans , Infertility, Female , Menopause, Premature/genetics , Ovarian Diseases , Exome Sequencing , Young Adult , Exportin 1 Protein
4.
Vet Comp Oncol ; 18(2): 214-223, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31461207

ABSTRACT

Canine oral melanoma is the first malignancy of the oral cavity in dogs and is characterized by a local invasiveness and a high metastatic propensity. A better knowledge of genetic alterations is expected to improve management of this tumour. Copy number alterations are known characteristics of mucosal melanomas both in dogs and humans. The goal of this study was to explore the prognostic value of somatic focal amplifications on chromosomes (Canis Familiaris [CFA]) 10 and 30 in canine oral melanoma. The cohort included 73 dogs with oral melanoma confirmed by histology, removed surgically without adjuvant therapy and with a minimal follow-up of 6 months. Epidemiological, clinical and histological data were collected and quantitative-PCR were performed on formalin-fixed paraffin-embedded (FFPE) samples to identify specific focal amplifications. The 73 dogs included in the study had a median survival time of 220 days. Focal amplifications on CFA 10 and 30 were recurrent (49.3% and 50.7% of cases, respectively) and CFA 30 amplification was significantly associated with the amelanotic phenotype (P = .046) and high mitotic index (MI; P = .0039). CFA 30 amplification was also linked to poor prognosis (P = .0005). Other negative prognostic factors included gingiva location (P = .003), lymphadenomegaly (P = .026), tumour ulceration at diagnosis (P = .003), MI superior to 6 mitoses over 10 fields (P = .001) and amelanotic tumour (P = .029). In multivariate analyses using Cox proportional hazards regression, CFA 30 amplification (Hazard ratio [HR] = 2.08; P = .011), tumour location (HR = 2.20; P = .005) and histological pigmentation (HR = 1.87; P = .036) were significantly associated with shorter survival time. Focal amplification of CFA 30 is linked to an aggressive subset and constitutes a new prognostic factor.


Subject(s)
Chromosome Aberrations/veterinary , Dog Diseases/genetics , Melanoma/veterinary , Mouth Neoplasms/veterinary , Animals , Dogs , Female , Genetic Predisposition to Disease , Male , Melanoma/genetics , Mitotic Index , Mouth Neoplasms/genetics , Prognosis
5.
Cancer Res ; 77(21): 5721-5727, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28883003

ABSTRACT

Canine cancers represent a tremendous natural resource due to their incidence and striking similarities to human cancers, sharing similar clinical and pathologic features as well as oncogenic events, including identical somatic mutations. Considering the importance of gene fusions as driver alterations, we explored their relevance in canine cancers. We focused on three distinct human-comparable canine cancers representing different tissues and embryonic origins. Through RNA-Seq, we discovered similar gene fusions as those found in their human counterparts: IGK-CCND3 in B-cell lymphoma, MPB-BRAF in glioma, and COL3A1-PDGFB in dermatofibrosarcoma protuberans-like. We showed not only similar partner genes but also identical breakpoints leading to oncogene overexpression. This study demonstrates similar gene fusion partners and mechanisms in human-dog corresponding tumors and allows for selection of targeted therapies in preclinical and clinical trials with pet dogs prior to human trials, within the framework of personalized medicine. Cancer Res; 77(21); 5721-7. ©2017 AACR.


Subject(s)
Dog Diseases/genetics , Neoplasms/genetics , Neoplasms/veterinary , Oncogene Proteins, Fusion/genetics , Animals , Base Sequence , Blotting, Western , Chromosome Breakpoints , Dog Diseases/metabolism , Dogs , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Glioma/veterinary , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/veterinary , Neoplasms/metabolism , Oncogene Fusion , Oncogene Proteins, Fusion/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic
6.
Molecules ; 22(7)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28704942

ABSTRACT

The extreme resiliency of lichens to UV radiations makes them an interesting model to find new photoprotective agents acting as UV-blockers and antioxidant. In this research, using a new in vitro method designed to overcome the shortage of material associated to many studies dealing with natural products, we show that the three major compounds isolated from the lichen Vulpicida pinastri, vulpinic acid, pinastric acid and usnic acid, were UV blocker agents. Antioxidant assays evidenced superoxide anion scavenging activity. Combination of the most promising compounds against UVB and UVB radiations, usnic acid, vulpinic acid and pinastric acid, increased the photoprotective activity. At the same time, they were found not cytotoxic on keratinocyte cell lines and photostable in the UVA and UVB ranges. Thus, lichens represent an attractive source to find good candidate ingredients as photoprotective agents. Additionally, the uncommon scalemic usnic acid mixture in this Vulpicida species was proven through electronic circular dichroism calculation.


Subject(s)
Antioxidants/pharmacology , Benzofurans/pharmacology , Furans/pharmacology , Lichens/chemistry , Phenylacetates/pharmacology , Radiation-Protective Agents/pharmacology , Antioxidants/isolation & purification , Benzofurans/isolation & purification , Furans/isolation & purification , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Phenylacetates/isolation & purification , Plant Extracts/chemistry , Radiation-Protective Agents/isolation & purification , Ultraviolet Rays
7.
Virchows Arch ; 471(1): 107-115, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28488172

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) has a poor prognosis with a 50% risk of metastases. Little is known about the phenotypic and molecular profiles of metastases regarding their corresponding primary tumors. This study aimed to screen phenotypic and genotypic differences between metastases and their corresponding primary tumors. We selected four cases with available frozen material. The histological, immunohistochemical (VEGFA, CD31, SMA, Ki67, p53, PAR-3), FISH (VHL gene), next-generation sequencing (VHL and c-MET genes), multiplex ligation-dependent probe amplification, and array-(comparative genomic hybridization) CGH analyses were realized. Metastases were nodal, hepatic (synchronous), adrenal, and pulmonary (metachronous). High-grade tumor cells were significantly more frequent in metastases (p = 0.019). Metastases and high-grade zones of primary tumors shared similar characteristics compared to low-grade zones: a lower microscopic vascular density (43.5 vs 382.5 vessels/mm2; p = 0.0027), a higher expression of VEGF (73 vs 10%, p = 0.045), Ki67 (37.6 vs 8.3%; p = 0.011), and p53 (54 vs 10.6%; p = 0.081), and a cytoplasmic and membranous PAR-3 staining. Metastases exhibited more chromosomal imbalances than primary tumors in total (18.75 ± 6.8; p = 0.044) with more genomic gains (13.5 ± 7; p = 0.013). The loss of chromosome 9 and gain of Xq were found in both primary tumors and metastases but gains of loci or chromosomes 2p, 3q, 5, 8q, 12, and 20 were only found in metastases. The VHL gene status was similar in each tumor couple. Although metastases and primary tumors share common histological features, this study highlights chromosomal differences specific to metastases which could be involved in ccRCC metastatic evolution.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Aged , Comparative Genomic Hybridization , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Mutation , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-met/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...