Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 109(15): 155005, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102320

ABSTRACT

We present a new model of self-consistent coupling between low frequency, ion-scale coherent structures with high frequency whistler waves in order to interpret Cluster data. The idea relies on the possibility of trapping whistler waves by inhomogeneous external fields where they can be spatially confined and propagate for times much longer than their characteristic electronic time scale. Here we take the example of a slow magnetosonic soliton acting as a wave guide in analogy with the ducting properties of an inhomogeneous plasma. The soliton is characterized by a magnetic dip and density hump that traps and advects high frequency waves over many ion times. The model represents a new possible way of explaining space measurements often detecting the presence of whistler waves in correspondence to magnetic depressions and density humps. This approach, here given by means of slow solitons, but more general than that, is alternative to the standard approach of considering whistler wave packets as associated with nonpropagating magnetic holes resulting from a mirror-type instability.

2.
Phys Rev Lett ; 98(26): 265001, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17678094

ABSTRACT

Solitary nonlinear (deltaB/B>>1) electromagnetic pulses have been detected in Earth's geomagnetic tail accompanying plasmas flowing at super-Alfvénic speeds. The pulses in the current sheet had durations of approximately 5 s, were left-hand circularly polarized, and had phase speeds of approximately the Alfvén speed in the plasma frame. These pulses were associated with a field-aligned current J(parallel) and observed in low density (approximately 0.3 cm(-3)), high temperature (T(e) approximately T(i) approximately 3x10(7) K), and beta approximately 10 plasma that included electron and ion beams streaming along B. The wave activity was enhanced from below the ion cyclotron frequency to electron cyclotron and upper hybrid frequencies. The detailed properties suggest the pulses are nonlinearly steepened ion cyclotron or Alfvén waves.

3.
Phys Rev Lett ; 96(7): 075002, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16606099

ABSTRACT

Here we report the first three-dimensional spatial spectrum of the low frequency magnetic turbulence obtained from the four Cluster spacecraft in the terrestrial magnetosheath close to the magnetopause. We show that the turbulence is compressible and dominated by mirror structures, its energy is injected at a large scale kp approximately 0.3 (l approximately 2000 km) via a mirror instability well predicted by linear theory, and cascades nonlinearly and unexpectedly up to kp approximately 3.5 (l approximately 150 km), revealing a new power law in the inertial range not predicted by any turbulence theory, and its strong anisotropy is controlled by the static magnetic field and the magnetopause normal.

4.
Science ; 307(5713): 1255-9, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15604362

ABSTRACT

We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 +/- 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

5.
Science ; 268(5213): 1026-9, 1995 May 19.
Article in English | MEDLINE | ID: mdl-17774230

ABSTRACT

Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

6.
Science ; 257(5076): 1524-31, 1992 Sep 11.
Article in English | MEDLINE | ID: mdl-17776162

ABSTRACT

The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...