Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37602496

ABSTRACT

Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.


Subject(s)
Butterflies , Pigmentation , Animals , Pigmentation/genetics , Butterflies/genetics , Butterflies/metabolism , Signal Transduction/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Wings, Animal/metabolism
2.
Cell Rep ; 42(8): 112820, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37481719

ABSTRACT

Continuous color polymorphisms can serve as a tractable model for the genetic and developmental architecture of traits. Here we investigated continuous color variation in Colias eurytheme and Colias philodice, two species of sulphur butterflies that hybridize in sympatry. Using quantitative trait locus (QTL) analysis and high-throughput color quantification, we found two interacting large-effect loci affecting orange-to-yellow chromaticity. Knockouts of red Malpighian tubules (red), likely involved in endosomal maturation, result in depigmented wing scales. Additionally, the transcription factor bric-a-brac can act as a modulator of orange pigmentation. We also describe the QTL architecture of other continuously varying traits, together supporting a large-X effect model where the genetic control of species-defining traits is enriched on sex chromosomes. This study sheds light on the range of possible genetic architectures that can underpin a continuously varying trait and illustrates the power of using automated measurement to score phenotypes that are not always conspicuous to the human eye.


Subject(s)
Butterflies , Animals , Humans , Butterflies/genetics , Sympatry , Pigmentation/genetics , Quantitative Trait Loci/genetics , Polymorphism, Genetic , Wings, Animal
3.
J Exp Zool B Mol Dev Evol ; 336(6): 470-481, 2021 09.
Article in English | MEDLINE | ID: mdl-34010515

ABSTRACT

Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.


Subject(s)
Biological Evolution , Butterflies/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway , Animals , Butterflies/growth & development , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Ligands , Phylogeny , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...