Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Physiol Meas ; 30(12): 1357-69, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19864707

ABSTRACT

Photoplethysmography variability (PPGV) is currently considered to be a good surrogate to heart rate variability (HRV) measurements using the time between two pulse waves instead of RR intervals. Nevertheless, the interchangeability between HRV and PPGV has never been evaluated in situations with severe alterations in the autonomic nervous system (ANS). We aimed to identify the conditions for a correct utilization of PPGV in evaluating the consequences of sympathetic stimulations. Nine subjects performed three tests: active orthostatic test, slow walk and moderate and exhaustive cycling exercises in the supine position. Pulse waves at the fingertip and RR intervals were recorded at the same time. We used correlations and the Bland and Altman method to compare and evaluate interchangeability between several HRV indices. Bland and Altman analysis highlighted small discrepancies between PPGV and HRV for all HRV indices in the supine position and for LF(ms)(2), HF(ms)(2), LF(peak) and RMSSD in the upright position. During the slow walk, it was impossible to detect properly PPG peaks. We observed large differences between the two methods during the cycling exercise. In conclusion, PPGV can be used instead of HRV without reserve in the supine position but only for some HRV indices in the upright position and not during slow walk and cycling exercise.


Subject(s)
Heart Function Tests/methods , Heart Rate , Photoplethysmography/methods , Adult , Arm , Bicycling/physiology , Exercise Test/methods , Humans , Male , Posture/physiology , Pulse/methods , Supine Position/physiology , Time Factors , Walking/physiology
3.
Int J Sports Med ; 28(3): 186-92, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17024632

ABSTRACT

We aimed to evaluate 1) the altitude where maximal heart rate (HR (max)) decreases significantly in both trained and untrained subjects in moderate acute hypoxia, and 2) if the HR (max) decrease could partly explain the drop of V.O (2max). Seventeen healthy males, nine trained endurance athletes (TS) and eight untrained individuals (US) were studied. Subjects performed incremental exercise tests at sea level and at 5 simulated altitudes (1000, 1500, 2500, 3500, 4500 meters). Power output (PO), heart rate (HR), arterial oxygen saturation (SaO (2)), oxygen uptake (V.O (2)), arterialized blood pH and lactate were measured. Both groups showed a progressive reduction in V.O (2max). The decrement in HR (max) (DeltaHR (max)) was significant from 1000 m for TS and 2500 m for US and more important in TS than US (at 1500 m and 3500 m). At maximal exercise, TS had a greater reduction in SaO (2) (DeltaSaO (2)) at each altitude. DeltaHR (max) observed in TS was correlated with DeltaSaO (2). When the two groups were pooled, simple regressions showed that DeltaV.O (2max) was correlated with both DeltaSaO (2) and DeltaHR (max). However, a multiple regression analysis demonstrated that DeltaSaO (2) alone may account for DeltaV.O (2max). Furthermore, in spite of a greater reduction in SaO (2) and HR (max) in TS, no difference was evidenced in relative DeltaV.O (2max) between groups. Thus, in moderate acute hypoxia, the reduction in SaO (2) is the primary factor to explain the drop of V.O (2max) in trained and untrained subjects.


Subject(s)
Heart Rate/physiology , Hypoxia/physiopathology , Oxygen Consumption/physiology , Oxygen/blood , Physical Fitness/physiology , Adult , Altitude , Humans , Male , Multivariate Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...