Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Dalton Trans ; 53(23): 9952-9963, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38809151

ABSTRACT

The structural, spectroscopic and electronic properties of Na and K birnessites were investigated from ambient conditions (birA) to complete dehydration, and the involved mechanisms were scrutinized. Density Functional Theory (DFT) simulations were employed to derive structural models for lamellar A0.33MnO2·xH2O (A = Na+ or K+, x = 0 or 0.66), subsequently compared with the experimental results obtained for Na0.30MnO2·0.75H2O and K0.22MnO2·0.77H2O materials. Thermal analysis (TGA-DSC), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Near Ambient Pressure X-ray Photoemission Spectroscopy (NAP-XPS) measurements were conducted for both birnessites. Dehydration under vacuum, annealing, or controlled relative humidity were considered. Results indicated that complete birnessite dehydration was a two-stage process. In the first stage, water removal from the interlayer of fully hydrated birnessite (birA) down to a molar H2O/A ratio of ∼2 (birB) led to the progressive shrinkage of the interlayer distance (3% for Na birnessite, 1% for K birnessite). In the second stage, water-free (birC) domains with a shorter interlayer distance (20% for Na birnessite, 10% for K birnessite) appeared and coexisted with birB domains. Then, birB was essentially transformed into birC when complete dehydration was achieved. The vibrational properties of birA were consistent with strong intermolecular interactions among water molecules, whereas partially dehydrated birnessite (birB) showed a distinct feature, with 3 (for Na-bir) and 2 (for K-bir) vibrations that were reproduced by DFT calculations for organized water into the interlayer (x = 0.66). The study also demonstrated that the electronic structure of Na birnessite depends on the interlayer water content. The external Na+ electronic level (Na 2p) was slightly destabilized (+0.3 eV binding energy) under near ambient conditions (birA) compared to drier conditions (birB and birC).

2.
Rev Sci Instrum ; 85(8): 083903, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173280

ABSTRACT

A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 × 10(11) spins/cm(2), which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

3.
Nanotechnology ; 24(24): 245402, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23702912

ABSTRACT

New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Laccase/metabolism , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Acrylic Resins/chemistry , Adsorption , Carbon Fiber , Catalysis , Electric Conductivity , Electrochemical Techniques , Electrodes , Nanotubes, Carbon/ultrastructure , Oxygen/chemistry , Spectrum Analysis, Raman , Temperature , Trametes/enzymology
4.
Dalton Trans ; (18): 3065-71, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16127501

ABSTRACT

Non-centrosymmetric pi-conjugated systems incorporating closo-dodecaborate clusters, [NC-C6H4-C(H=N(H)-B12H11]-(2), [NC-C6H4-C(H)=C(H)-C(6)H(4)-C(H)=N(H)-B12H11]-(3), and [NC-C6H4-C(H)=C(H)-C6H4-C(H)=C(H)-C6H4-C(H)=N(H)-B12H11]-(4) have been synthesized by reaction of the monoamino derivative of B12, [B12H11NH3]-(1), with various arylaldehydes, R-C6H4-CHO. These Schiff base-like compounds were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. In order to evaluate these boron rich pi-systems as potential materials for two-photon absorption (TPA) processes, UV linear absorption curves were recorded for 3 and 4, and comparatively studied with those of the boron-free pi-systems NC-C6H4-C(H)=N-CH3(5) and NC-C6H4-C(H)=C(H)-C6H4-C(H)=N-CH3(6). The donor effect of the boron cluster was evidenced by a shift to the lower energy of the absorption band in the spectra of systems incorporating B12. The two photon absorption (TPA) spectrum of compound , obtained by the up-conversion method, shows a resonance at 720 nm with a cross-section sigma(TPA) of 35 x 10(-50) cm(4) s photon(-1) molecule(-1). This value suggests the potential of B12 clusters to be used as new donor groups for the synthesis of non-linear materials.

5.
Plant Cell Rep ; 16(10): 680-685, 1997 Jul.
Article in English | MEDLINE | ID: mdl-30727618

ABSTRACT

A transformation procedure was developed for hybrid larch embryogenic tissue using Agrobacterium tumefaciens. The cocultivation procedure yielded one to two transformation events per 100 cocultivated masses. The addition of 100 µM coniferyl alcohol increased the yield. This improved procedure was successfully applied to three other genotypes. After 3 months on selective medium, the transgenic tissue remained embryogenic, which allowed production of transgenic plants in the greenhouse. Stable integration of the transgene was confirmed by PCR and Southern hybridisation on transformed tissues and acclimatised plants.

6.
Plant Physiol ; 112(4): 1479-1490, 1996 Dec.
Article in English | MEDLINE | ID: mdl-12226459

ABSTRACT

Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

7.
Arch Fr Pediatr ; 37 Suppl 1: XXI-XXIV, 1980.
Article in French | MEDLINE | ID: mdl-7469722

ABSTRACT

The number of pregnancies in adolescents is increasing in most countries and represents a public health problem. Teenage pregnancies are in the high-risk group. However, early recognition and correct management make them as safe as those of older women except for two complications which seem to be peculiar to them: toxemia of pregnancy and premature delivery. In addition, a higher frequency of congenital defects of unknown etiology was observed in our study.


Subject(s)
Pregnancy in Adolescence , Adolescent , Birth Weight , Child , Female , France , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...