Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 54(9): 2451-62, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21744291

ABSTRACT

AIMS/HYPOTHESIS: The adult non-obese Goto-Kakizaki (GK) rat model of type 2 diabetes, particularly females, carries in addition to hyperglycaemia a genetic predisposition towards dyslipidaemia, including hypercholesterolaemia. As cholesterol-induced atherosclerosis may be programmed in utero, we looked for signs of perinatal lipid alterations and islet microangiopathy. We hypothesise that such alterations contribute towards defective pancreas/islet vascularisation that might, in turn, lead to decreased beta cell mass. Accordingly, we also evaluated islet inflammation and endothelial activation in both prediabetic and diabetic animals. METHODS: Blood, liver and pancreas were collected from embryonic day (E)21 fetuses, 7-day-old prediabetic neonates and 2.5-month-old diabetic GK rats and Wistar controls for analysis/quantification of: (1) systemic variables, particularly lipids; (2) cholesterol-linked hepatic enzyme mRNA expression and/or activity; (3) pancreas (fetuses) or collagenase-isolated islet (neonates/adults) gene expression using Oligo GEArray microarrays targeted at rat endothelium, cardiovascular disease biomarkers and angiogenesis, and/or RT-PCR; and (4) pancreas endothelial immunochemistry: nestin (fetuses) or von Willebrand factor (neonates). RESULTS: Systemic and hepatic cholesterol anomalies already exist in GK fetuses and neonates. Hyperglycaemic GK fetuses exhibit a similar percentage decrease in total pancreas and islet vascularisation and beta cell mass. Normoglycaemic GK neonates show systemic inflammation, signs of islet pre-microangiopathy, disturbed angiogenesis, collapsed vascularisation and altered pancreas development. Concomitantly, GK neonates exhibit elevated defence mechanisms. CONCLUSIONS/INTERPRETATION: These data suggest an autoinflammatory disease, triggered by in utero programming of cholesterol-induced islet microangiopathy interacting with chronic hyperglycaemia in GK rats. During the perinatal period, GK rats show also a marked deficient islet vascularisation in conjunction with decreased beta cell mass.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/physiopathology , Disease Progression , Hypercholesterolemia/physiopathology , Neovascularization, Pathologic/physiopathology , Aging/metabolism , Animals , Animals, Newborn , Blood Glucose/metabolism , Disease Models, Animal , Female , Insulin/blood , Insulin-Secreting Cells/pathology , Islets of Langerhans/blood supply , Male , Predictive Value of Tests , Pregnancy , Rats , Rats, Inbred Strains , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...