Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Radiat Res ; 202(3): 510-522, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39066627

ABSTRACT

Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.


Subject(s)
Gamma Rays , Animals , Mice , Gamma Rays/adverse effects , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/diagnostic imaging , Dose-Response Relationship, Radiation , Male , Mice, Inbred C57BL , Female , Species Specificity , Cesium Radioisotopes , Bone Marrow/radiation effects , Bone Marrow/pathology
2.
Commun Med (Lond) ; 3(1): 108, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558833

ABSTRACT

BACKGROUND: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease. METHODS: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART). Xenograft and autochthonous tumor models were treated with hypofractionated ablative doses of radiotherapy. RESULTS: We demonstrate that hypofractionated regimens used in clinical practice can be effectively delivered in mouse models. SART alters tumor stroma and the immune environment, improves survival in GEMMs of primary prostate and colorectal cancer, and synergizes with androgen deprivation in prostate cancer. Complete pathologic responses were achieved in xenograft models, but not in GEMMs. CONCLUSIONS: While SART is capable of fully ablating xenografts, it is unable to completely eradicate disease in GEMMs, arguing that resistance to potentially curative therapy can be modeled in GEMMs.


Mice can be used to model the types of cancer seen in people to investigate the effects of cancer therapies, such as radiation. Here, we apply radiation therapy treatments that are able to cure cancer in humans to mice that have cancer of the prostate or colorectum. We show that the mice do not experience many side effects and that the tumours reduce in size, but in some cases show progression after treatment. Our study demonstrates that mice can be used to better understand how human cancers respond to radiation treatment, which can lead to the development of improved treatments and treatment schedules.

3.
Nature ; 545(7654): 355-359, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28489818

ABSTRACT

The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells. Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration. Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies.


Subject(s)
Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Disease Progression , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Stem Cell Niche , Wnt Proteins/biosynthesis , Wnt Signaling Pathway , Adenocarcinoma of Lung , Animals , Cell Proliferation/drug effects , Female , Humans , Male , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries/pharmacology , Survival Rate , Wnt Proteins/chemistry , Wnt Proteins/metabolism
4.
Radiat Res ; 184(4): 378-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26401594

ABSTRACT

To ensure reliability and reproducibility of radiobiological data, it is necessary to standardize dosimetry practices across all research institutions. The photoelectric effect predominates over other interactions at low energy and in high atomic number materials such as bone, which can lead to increased dose deposition in soft tissue adjacent to mineral bone due to secondary radiation particles. This may produce radiation effects that deviate from higher energy photon irradiation that best model exposure from clinical radiotherapy or nuclear incidences. Past theoretical considerations have indicated that this process should affect radiation exposure of neighboring bone marrow (BM) and account for reported differences in relative biological effectiveness (RBE) for hematopoietic failure in rodents. The studies described herein definitively estimate spatial dose distribution and biological effectiveness within the BM compartment for (137)Cs gamma rays and 320 kVp X rays at two levels of filtration: 1 and 4 mm Cu half-value layer (HVL). In these studies, we performed: 1. Monte Carlo simulations on a 5 µm resolution model of mouse vertebrae and femur derived from micro-CT images; 2. In vitro biological experiments irradiating BM cells plated directly on the surface of a bone-equivalent material (BEM); and 3. An in vivo study on BM cell survival in irradiated live mice. Simulation results showed that the relative dose increased in proximity to bone at the lower radiation energies and produced averaged values of relative dose over the entire BM volume within imaged trabecular bone of 1.17, 1.08 and 1.01 for beam qualities of 1 mm Cu HVL, 4 mm Cu HVL and (137)Cs, respectively. In accordance with Monte Carlo simulations, in vitro irradiation of BM cells located on BEM and in vivo whole-body irradiation at a prescribed dose to soft tissue of 6 Gy produced relative cell killing of hematopoietic progenitors (CFU-C) that significantly increased for the 1 mm Cu HVL X rays compared to radiation exposures of higher photon energies. Thus, we propose that X rays of the highest possible kVp and filtration be used to investigate radiation effects on the hematopoietic system, as this will allow for better comparisons with high-energy photon exposures applied in radiotherapy or as anticipated in a nuclear event.


Subject(s)
Bone Marrow/radiation effects , Photons , X-Rays , Animals , Cell Death/radiation effects , Hematopoietic Stem Cells/radiation effects , Male , Mice , Mice, Inbred C57BL , Radiation Dosage
5.
Proc Natl Acad Sci U S A ; 109(30): 12207-12, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22761317

ABSTRACT

Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFß superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.


Subject(s)
Bone Diseases, Metabolic/prevention & control , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone and Bones/drug effects , Osteogenesis/drug effects , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Analysis of Variance , Animals , Blotting, Western , Bone Density/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Resorption/drug therapy , Bone and Bones/anatomy & histology , Bone and Bones/physiology , Chromatography, Gel , Cloning, Molecular , Densitometry , Electrophoresis, Polyacrylamide Gel , Intercellular Signaling Peptides and Proteins/metabolism , Luciferases , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/physiology , Osteoprotegerin/metabolism , Polymerase Chain Reaction , RANK Ligand/metabolism , Real-Time Polymerase Chain Reaction , Recombinant Fusion Proteins/administration & dosage , Signal Transduction/physiology
6.
Endocrinology ; 153(7): 3133-46, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22549226

ABSTRACT

Obesity results from disproportionately high energy intake relative to energy expenditure. Many therapeutic strategies have focused on the intake side of the equation, including pharmaceutical targeting of appetite and digestion. An alternative approach is to increase energy expenditure through physical activity or adaptive thermogenesis. A pharmacological way to increase muscle mass and hence exercise capacity is through inhibition of the activin receptor type IIB (ActRIIB). Muscle mass and strength is regulated, at least in part, by growth factors that signal via ActRIIB. Administration of a soluble ActRIIB protein comprised of a form of the extracellular domain of ActRIIB fused to a human Fc (ActRIIB-Fc) results in a substantial muscle mass increase in normal mice. However, ActRIIB is also present on and mediates the action of growth factors in adipose tissue, although the function of this system is poorly understood. In the current study, we report the effect of ActRIIB-Fc to suppress diet-induced obesity and linked metabolic dysfunctions in mice fed a high-fat diet. ActRIIB-Fc induced a brown fat-like thermogenic gene program in epididymal white fat, as shown by robustly increased expression of the thermogenic genes uncoupling protein 1 and peroxisomal proliferator-activated receptor-γ coactivator 1α. Finally, we identified multiple ligands capable of reducing thermogenesis that represent likely target ligands for the ActRIIB-Fc effects on the white fat depots. These data demonstrate that novel therapeutic ActRIIB-Fc improves obesity and obesity-linked metabolic disease by both increasing skeletal muscle mass and by inducing a gene program of thermogenesis in the white adipose tissues.


Subject(s)
Activin Receptors, Type II/metabolism , Obesity/metabolism , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism , Animals , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression Profiling , Humans , Immunohistochemistry/methods , Ligands , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Peroxisome Proliferator-Activated Receptors , Surface Plasmon Resonance , Thermogenesis , Tomography, X-Ray Computed/methods , Transcription Factors
7.
Endocrinology ; 151(9): 4289-300, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20573726

ABSTRACT

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 +/- 0.42 g (VEH) versus 23.43 +/- 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 +/- 0.26 g (VEH) versus 19.78 +/- 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 +/- 0.48 g (VEH) versus 3.53 +/- 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 +/- 0.53 g (VEH) versus 4.57 +/- 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy.


Subject(s)
Activin Receptors, Type II/pharmacology , Androgen Antagonists/pharmacology , Body Composition/drug effects , Bone Density/drug effects , Activin Receptors, Type II/genetics , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Analysis of Variance , Animals , Body Weight/drug effects , Cell Line , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/blood , Obesity/prevention & control , Orchiectomy , Random Allocation , Recombinant Fusion Proteins/pharmacology , Solubility
8.
Proc Natl Acad Sci U S A ; 105(19): 7082-7, 2008 May 13.
Article in English | MEDLINE | ID: mdl-18460605

ABSTRACT

Diseases that affect the regulation of bone turnover can lead to skeletal fragility and increased fracture risk. Members of the TGF-beta superfamily have been shown to be involved in the regulation of bone mass. Activin A, a TGF-beta signaling ligand, is present at high levels in bone and may play a role in the regulation of bone metabolism. Here we demonstrate that pharmacological blockade of ligand signaling through the high affinity receptor for activin, type II activin receptor (ActRIIA), by administration of the soluble extracellular domain of ActRIIA fused to a murine IgG2a-Fc, increases bone formation, bone mass, and bone strength in normal mice and in ovariectomized mice with established bone loss. These observations support the development of this pharmacological strategy for the treatment of diseases with skeletal fragility.


Subject(s)
Activin Receptors, Type II/pharmacology , Bone and Bones/drug effects , Osteogenesis/drug effects , Activin Receptors, Type II/administration & dosage , Activin Receptors, Type II/isolation & purification , Animals , Biomechanical Phenomena , Bone Resorption , Cell Line , Female , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/isolation & purification , Immunoglobulin G/pharmacology , Lumbar Vertebrae/drug effects , Mice , Organ Size/drug effects , Ovariectomy , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacology , Solubility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL