Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1870(9): 140829, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35933084

ABSTRACT

Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.


Subject(s)
Hydroxyl Radical , Proteins , Hydroxyl Radical/chemistry , Mass Spectrometry/methods , Oxidation-Reduction , Protein Conformation , Proteins/chemistry
2.
Sci Transl Med ; 14(635): eabl8124, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35076282

ABSTRACT

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Drug Combinations , Half-Life , Humans , Immunization, Passive , Primates , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
3.
Bioconjug Chem ; 32(8): 1834-1844, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34369158

ABSTRACT

Antibody-drug conjugates have become one of the most actively developed classes of drugs in recent years. Their great potential comes from combining the strengths of large and small molecule therapeutics: the exquisite specificity of antibodies and the highly potent nature of cytotoxic compounds. More recently, the approach of engineering antibody-drug conjugate scaffolds to achieve highly controlled drug to antibody ratios has focused on substituting or inserting cysteines to facilitate site-specific conjugation. Herein, we characterize an antibody scaffold engineered with an inserted cysteine that formed an unexpected disulfide bridge during manufacture. A combination of mass spectrometry and biophysical techniques have been used to understand how the additional disulfide bridge forms, interconverts, and changes the stability and structural dynamics of the antibody intermediate. This quantitative and structurally resolved model of the local and global changes in structure and dynamics associated with the engineering and subsequent disulfide-bonded variant can assist future engineering strategies.


Subject(s)
Antibody Specificity , Antineoplastic Agents/chemistry , Immunoconjugates , Sulfhydryl Compounds/chemistry , Antibodies, Monoclonal , Binding Sites , Drug Design , Models, Molecular , Protein Conformation
4.
J Am Soc Mass Spectrom ; 32(7): 1583-1592, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33586970

ABSTRACT

NMR studies and X-ray crystallography have shown that the structures of the 99-residue amyloidogenic protein ß2-microglobulin (ß2m) and its more aggregation-prone variant, D76N, are indistinguishable, and hence, the reason for the striking difference in their aggregation propensities remains elusive. Here, we have employed two protein footprinting methods, hydrogen-deuterium exchange (HDX) and fast photochemical oxidation of proteins (FPOP), in conjunction with ion mobility-mass spectrometry, to probe the differences in conformational dynamics of the two proteins. Using HDX-MS, a clear difference in HDX protection is observed between these two proteins in the E-F loop (residues 70-77) which contains the D76N substitution, with a significantly higher deuterium uptake being observed in the variant protein. Conversely, following FPOP-MS only minimal differences in the level of oxidation between the two proteins are observed in the E-F loop region, suggesting only modest side-chain movements in that area. Together the HDX-MS and FPOP-MS data suggest that a tangible perturbation to the hydrogen-bonding network in the E-F loop has taken place in the D76N variant and furthermore illustrate the benefit of using multiple complementary footprinting methods to address subtle, but possibly biologically important, differences between highly similar proteins.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Protein Footprinting/methods , beta 2-Microglobulin/chemistry , Amino Acid Substitution , Humans , Protein Conformation , beta 2-Microglobulin/analysis , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism
5.
Anal Chem ; 91(23): 15163-15170, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31687799

ABSTRACT

Differences in conformational dynamics between two full-length monoclonal antibodies have been probed in detail using Fast Photochemical Oxidation of Proteins (FPOP) followed by proteolysis and LC-ESI-MS/MS analyses. FPOP uses hydroxyl radical labeling to probe the surface-accessible regions of proteins and has the advantage that the resulting covalent modifications are irreversible, thus permitting optimal downstream analysis. Despite the two monoclonal antibodies (mAbs) differing by only three amino acids in the heavy chain complementarity determining regions (CDRs), one mAb, MEDI1912-WFL, has been shown to undergo reversible self-association at high concentrations and exhibited poor pharmacokinetic properties in vivo, properties which are markedly improved in the variant, MEDI1912-STT. Identifying the differences in oxidative labeling between the two antibodies at residue level revealed long-range effects which provide a key insight into their conformational differences. Specifically, the amino acid mutations in the CDR region of the heavy chain resulted in significantly different labeling patterns at the interfaces of the CL-CH1 and CH1-CH2 domains, with the nonaggregating variant undergoing up to four times more labeling in this region than the aggregation prone variant, thus suggesting a change in the structure and orientation of the CL-CH1 interface. The wealth of FPOP and LC-MS data obtained enabled the study of the LC elution properties of FPOP-oxidized peptides. Some oxidized amino acids, specifically histidine and lysine, were noted to have unique effects on the retention time of the peptide, offering the promise of using such an analysis as an aid to MS/MS in assigning oxidation sites.


Subject(s)
Antibodies, Monoclonal/chemistry , Chromatography, Liquid , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Protein Conformation , Tandem Mass Spectrometry
6.
J Am Soc Mass Spectrom ; 29(12): 2413-2426, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30267362

ABSTRACT

Hydrogen deuterium exchange (HDX) coupled to mass spectrometry (MS) is a well-established technique employed in the field of structural MS to probe the solvent accessibility, dynamics and hydrogen bonding of backbone amides in proteins. By contrast, fast photochemical oxidation of proteins (FPOP) uses hydroxyl radicals, liberated from the photolysis of hydrogen peroxide, to covalently label solvent accessible amino acid side chains on the microsecond-millisecond timescale. Here, we use these two techniques to study the structural and dynamical differences between the protein ß2-microglobulin (ß2m) and its amyloidogenic truncation variant, ΔN6. We show that HDX and FPOP highlight structural/dynamical differences in regions of the proteins, localised to the region surrounding the N-terminal truncation. Further, we demonstrate that, with carefully optimised LC-MS conditions, FPOP data can probe solvent accessibility at the sub-amino acid level, and that these data can be interpreted meaningfully to gain more detailed understanding of the local environment and orientation of the side chains in protein structures. Graphical Abstract ᅟ.


Subject(s)
Deuterium Exchange Measurement/methods , beta 2-Microglobulin/chemistry , Humans , Molecular Dynamics Simulation , Oxidation-Reduction , Peptide Fragments/chemistry , Photochemical Processes , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...