Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Carcinogenesis ; 39(4): 601-613, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29452350

ABSTRACT

Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24-/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations.


Subject(s)
Acetates/pharmacology , Breast Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Olive Oil/chemistry , Plant Extracts/pharmacology , Pyrans/pharmacology , Animals , Cyclopentane Monoterpenes , DNA Modification Methylases/drug effects , Female , Humans , Mice , TOR Serine-Threonine Kinases/drug effects , Xenograft Model Antitumor Assays
2.
Oncotarget ; 8(21): 35019-35032, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28388533

ABSTRACT

Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/metabolism , Denosumab/pharmacology , Haploinsufficiency , Neoplastic Stem Cells/metabolism , RANK Ligand/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Neoplastic Stem Cells/drug effects , Receptor Activator of Nuclear Factor-kappa B/metabolism , Up-Regulation/drug effects
3.
Histol Histopathol ; 32(7): 687-698, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27714708

ABSTRACT

Fatty acid synthase (FASN) is a key lipogenic enzyme for de novo fatty acid biosynthesis and a druggable metabolic oncoprotein that is activated in most human cancers. We evaluated whether the HER2-driven lipogenic phenotype might represent a biomarker for sensitivity to pharmacological FASN blockade. A majority of clinically HER2-positive tumors were scored as FASN overexpressors in a series of almost 200 patients with invasive breast carcinoma. Re-classification of HER2-positive breast tumors based on FASN gene expression predicted a significantly inferior relapse-free and distant metastasis-free survival in HER2+/FASN+ patients. Notably, non-tumorigenic MCF10A breast epithelial cells engineered to overexpress HER2 upregulated FASN gene expression, and the FASN inhibitor C75 abolished HER2-induced anchorage-independent growth and survival. Furthermore, in the presence of high concentrations of C75, HER2-negative MCF-7 breast cancer cells overexpressing HER2 (MCF-7/HER2) had significantly higher levels of apoptosis than HER2-negative cells. Finally, C75 at non-cytotoxic concentrations significantly reduced the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells. Collectively, our findings strongly suggest that the HER2-FASN lipogenic axis delineates a group of breast cancer patients that might benefit from treatment with therapeutic regimens containing FASN inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Fatty Acid Synthase, Type I/genetics , Receptor, ErbB-2/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fatty Acid Synthase, Type I/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Oncogenes/genetics , Prognosis , Receptor, ErbB-2/drug effects , Survival Analysis
4.
Aging (Albany NY) ; 8(7): 1330-52, 2016 07.
Article in English | MEDLINE | ID: mdl-27295498

ABSTRACT

Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts fromPINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.


Subject(s)
Cell Lineage/physiology , Mitochondria/metabolism , Mitophagy/physiology , Stem Cells/metabolism , Animals , Cellular Reprogramming/physiology , Energy Metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Metabolomics , Mice , Mice, Knockout , Protein Kinases/genetics , Protein Kinases/metabolism , Stem Cells/cytology
5.
Oncotarget ; 7(44): 71151-71168, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27223424

ABSTRACT

The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies.


Subject(s)
Breast Neoplasms/pathology , Fatty Acid Synthases/physiology , Lipogenesis/physiology , Animals , Cell Differentiation , Epithelial-Mesenchymal Transition , Extracellular Matrix/physiology , Fatty Acid Synthases/antagonists & inhibitors , Female , Humans , MCF-7 Cells , Mice , Phenotype , Signal Transduction
6.
Stem Cell Reports ; 6(3): 273-83, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26876667

ABSTRACT

By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the "energy barriers" separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells.


Subject(s)
Cellular Reprogramming , Neoplastic Stem Cells/cytology , Epigenesis, Genetic , Epithelial Cells/cytology , Epithelial Cells/metabolism , Histones/metabolism , Humans , MCF-7 Cells , Methylation , Models, Biological , Neoplastic Stem Cells/metabolism , Protein Processing, Post-Translational
7.
Cell Cycle ; 14(22): 3527-32, 2015.
Article in English | MEDLINE | ID: mdl-25970790

ABSTRACT

Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/drug effects , Protein Synthesis Inhibitors/pharmacology , Ribosomes/drug effects , Acriflavine/pharmacology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Drug Repositioning , Emetine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , High-Throughput Screening Assays , Humans , Mammary Glands, Human , Microarray Analysis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Protein Biosynthesis , Puromycin/pharmacology , Ribosomes/genetics , Ribosomes/metabolism
8.
Oncotarget ; 6(14): 12279-96, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25980580

ABSTRACT

Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.


Subject(s)
Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Metformin/metabolism , Mutant Proteins/genetics , Cell Line, Tumor , Humans , Mutation , Phenotype
9.
Aging (Albany NY) ; 6(9): 731-41, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25324469

ABSTRACT

Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.


Subject(s)
Aging/drug effects , Drug Discovery/methods , Iridoids/pharmacology , Plant Extracts/pharmacology , Plant Oils/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Iridoid Glucosides , Iridoids/chemistry , Olive Oil , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
10.
Oncotarget ; 5(18): 8306-16, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25246709

ABSTRACT

Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred throughACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Breast Neoplasms/enzymology , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Macrolides/pharmacology , Neoplastic Stem Cells/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Aldehyde Dehydrogenase/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Dose-Response Relationship, Drug , Female , Humans , Lipogenesis/drug effects , MCF-7 Cells , Molecular Targeted Therapy , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Oleic Acid/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Spheroids, Cellular , Transfection
11.
Anticancer Res ; 34(8): 4323-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25075066

ABSTRACT

BACKGROUND: Silibinin exerts hepatoprotective, anti-inflammatory and anti-fibrotic effects. Several pre-clinical studies have shown anti-tumoral activity of silibinin in breast cancer cell lines. CASE REPORT: We present the case of a heavily pre-treated breast cancer patient with extensive liver infiltration. The patient presented with progressive liver failure despite several chemotherapy treatments, including paclitaxel, capecitabine and vinorelbine. After four cycles of a fourth-line chemotherapy treatment consisting of carboplatin and gemcitabine, the patient's liver blood test results deteriorated to life-threatening levels. The compassionate use of Legasil®, a new commercially available nutraceutical product containing a new silibinin formulation, was offered to the patient according to article 37 of the 2013 Declaration of Helsinki. After treatment initiation, the patient presented clinical and liver improvement, which permitted the patient to continue palliative chemotherapy. CONCLUSION: This is the first case report of a clinical benefit of silibinin administration in a breast cancer patient.


Subject(s)
Breast Neoplasms/complications , Liver Failure/drug therapy , Liver/pathology , Silymarin/administration & dosage , Adult , Breast Neoplasms/pathology , Female , Humans , Silybin , Vitamin E/administration & dosage
12.
Oncotarget ; 5(12): 3970-82, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24994116

ABSTRACT

The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of "phenetic maps" of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (ß-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, "smart foods" or systemic "metabolic nichotherapies" may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and functionality of CS-like cells in real time.


Subject(s)
Food/statistics & numerical data , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Neoplastic Stem Cells/pathology , Phenotype
13.
Oncotarget ; 5(9): 2344-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24909934

ABSTRACT

"The dose makes the poison", the common motto of toxicology first expressed by Paracelsus more than 400 years ago, may effectively serve to guide potential applications for metformin and related biguanides in oncology. While Paracelsus' law for the dose-response effect has been commonly exploited for the use of some anti-cancer drugs at lower doses in non-neoplastic diseases (e.g., methotrexate), the opposite scenario also holds true; in other words, higher doses of non-oncology drugs, such as anti-diabetic biguanides, might exert direct anti-neoplastic effects. Here, we propose that, as for any drug, there is a dose range for biguanides that is without any effect, one corresponding to "diabetobiguanides" with a pharmacological effect (e.g., insulin sensitization in type 2 diabetes, prevention of insulin-dependent carcinogenesis, indirect inhibition of insulin and growth factor-dependent cancer growth) but with minimal toxicity and another corresponding to "oncobiguanides" with pharmacological (i.e., direct and strong anticancer activity against cancer cells) as well as toxic effects. Considering that biguanides demonstrate a better safety profile than most oncology drugs in current use, we should contemplate the possibility of administering biguanides through non-conventional routes (e.g., inhaled for carcinomas of the lung, topical for skin cancers, intravenous as an adjunctive therapy, rectal suppositories for rectal cancer) to unambiguously investigate the therapeutic value of high-dose transient biguanide exposure in cancer. Perhaps then, the oncobiguanides, as we call them here, could be viewed as a mechanistically different type of anti-cancer drugs employed at doses notably higher than those used chronically when functioning as diabetobiguanides.


Subject(s)
Antineoplastic Agents/administration & dosage , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use
14.
Methods Mol Biol ; 1170: 113-44, 2014.
Article in English | MEDLINE | ID: mdl-24906312

ABSTRACT

Cell division involves a series of ordered and controlled events that lead to cell proliferation. Cell cycle progression implies not only demanding amounts of cell mass, protein, lipid, and nucleic acid content but also a favorable energy state. The mammalian target of rapamycin (mTOR), in response to the energy state, nutrient status, and growth factor stimulation of cells, plays a pivotal role in the coordination of cell growth and the cell cycle. Here, we review how the nutrient-sensing mTOR-signaling cascade molecularly integrates nutritional and mitogenic/anti-apoptotic cues to accurately coordinate cell growth and cell cycle. First, we briefly outline the structure, functions, and regulation of the mTOR complexes (mTORC1 and mTORC2). Second, we concisely evaluate the best known ability of mTOR to control G1-phase progression. Third, we discuss in detail the recent evidence that indicates a new genome stability caretaker function of mTOR based on the specific ability of phosphorylated forms of several mTOR-signaling components (AMPK, raptor, TSC, mTOR, and S6K1), which spatially and temporally associate with essential mitotic regulators at the mitotic spindle and at the cytokinetic cleavage furrow.


Subject(s)
Cell Cycle , Cell Proliferation , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Genomic Instability , Humans , Phosphorylation , TOR Serine-Threonine Kinases/chemistry
15.
Oncotarget ; 5(7): 1942-54, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24722433

ABSTRACT

This study aimed to improve gastric cancer (GC) diagnosis by identifying and validating an INflammatory PROtein-driven GAstric cancer Signature (hereafter INPROGAS) using low-cost affinity proteomics. The detection of 120 cytokines, 43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 metalloproteinases was performed using commercially available human antibody microarray-based arrays. We identified 21 inflammation-related proteins (INPROGAS) with significant differences in expression between GC tissues and normal gastric mucosa in a discovery cohort of matched pairs (n=10) of tumor/normal gastric tissues. Ingenuity pathway analysis confirmed the "inflammatory response", "cellular movement" and "immune cell trafficking" as the most overrepresented biofunctions within INPROGAS. Using an expanded independent validation cohort (n = 22), INPROGAS classified gastric samples as "GC" or "non-GC" with a sensitivity of 82% (95% CI 59-94) and a specificity of 73% (95% CI 49-89). The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. Antibody microarray analyses of the GC-associated inflammatory proteome identified a 21-protein INPROGAS that accurately discriminated GC from noncancerous gastric mucosa.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Biomarkers, Tumor/metabolism , Cytokines/metabolism , Gastric Mucosa/metabolism , Metalloproteases/metabolism , Stomach Neoplasms/metabolism , Cell Movement , False Negative Reactions , False Positive Reactions , Female , Humans , Immunity, Cellular , Inflammation/metabolism , Male , Middle Aged , Predictive Value of Tests , Protein Array Analysis , Proteomics , Stomach Neoplasms/diagnosis
16.
Cell Cycle ; 13(7): 1132-44, 2014.
Article in English | MEDLINE | ID: mdl-24553122

ABSTRACT

Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Metformin/pharmacology , Neoplastic Stem Cells/metabolism , Transcriptome , AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/pathology , Gene Expression Profiling , Humans , MCF-7 Cells , Neoplasm Metastasis , Neoplastic Stem Cells/pathology
17.
Cell Cycle ; 13(3): 358-70, 2014.
Article in English | MEDLINE | ID: mdl-24406535

ABSTRACT

In the science-fiction thriller film Minority Report, a specialized police department called "PreCrime" apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called "PreCogs". We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized "stemotoxic" cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge "chromosome therapies" aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a "reprogramming cure" for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic , Genome , Neoplasms/genetics , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Differentiation/genetics , Cell Line, Tumor , Genome, Human , Humans , Mice , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Precision Medicine , Translational Research, Biomedical
18.
Oncoscience ; 1(12): 803-6, 2014.
Article in English | MEDLINE | ID: mdl-25621295

ABSTRACT

Cancer researchers are currently embarking on one of their field's biggest challenges, namely the understanding of how cellular metabolism or certain classes of elite metabolites (e.g., oncometabolites) can directly influence chromatin structure and the functioning of epi-transcriptional circuits to causally drive tumour formation. We here propose that refining the inherent cell attractor nature of nuclear reprogramming phenomena by adding the under-appreciated capacity of metabolism to naturally reshape the Waddingtonian landscape's topography provides a new integrative metabolo-epigenetic model of the cancer stem cell (CSC) theory.

19.
Cell Cycle ; 12(22): 3471-7, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24107627

ABSTRACT

The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka's nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E 2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E 2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E 2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E 2. Because E 2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E 2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.


Subject(s)
Breast Neoplasms/metabolism , Cellular Reprogramming , Estradiol/physiology , Estrogens/physiology , Neoplastic Stem Cells/physiology , SOXB1 Transcription Factors/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Humans , MCF-7 Cells , Mice , Mice, Nude , Phosphorylation , Receptors, Progesterone/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction
20.
Cell Cycle ; 12(21): 3390-404, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24047698

ABSTRACT

The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, - 2, CDC2, -6) and DNA replication-related genes (MCM4, - 5, - 6, - 7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (> 4500%) of ALDH(bright) cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDH(bright) cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells. This report is the first to show that: (1) loss of responsiveness to erlotinib in EGFR-mutant NSCLC can be explained in terms of erlotinib-refractory ALDH(bright) cells, which have been shown to exhibit stem cell-like properties; and (2) erlotinib-refractory ALDH(bright) cells are sensitive to the natural agent silibinin. Our findings highlight the benefit of administration of silibinin in combination with EGFR TKIs to target CSCs and minimize the ability of tumor cells to escape cell death in EGFR-mutant NSCLC patients.


Subject(s)
Aldehyde Oxidoreductases/genetics , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplastic Stem Cells/drug effects , Silymarin/pharmacology , Spheroids, Cellular/drug effects , Aldehyde Oxidoreductases/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Gene Expression Profiling , Genome-Wide Association Study , Genotype , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mutation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Signal Transduction , Silybin , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...