Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(61): e202301428, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37494303

ABSTRACT

The activation and functionalization of carbon dioxide entails great interest related to its abundance, low toxicity and associated environmental problems. However, the inertness of CO2 has posed a challenge towards its efficient conversion to added-value products. In this review we discuss one of the strategies that have been widely used to capture and activate carbon dioxide, namely the use of donor-acceptor interactions by partnering a Lewis acidic and a Lewis basic fragment. This type of CO2 activation resembles that found in metalloenzymes, whose outstanding performance in catalytically transforming carbon dioxide encourages further bioinspired research. We have divided this review into three general sections based on the nature of the active sites: metal-free examples (mainly formed by frustrated Lewis pairs), main group-transition metal combinations, and transition metal heterobimetallic complexes. Overall, we discuss one hundred compounds that cooperatively activate carbon dioxide by donor-acceptor interactions, revealing a wide range of structural motifs.

2.
Angew Chem Int Ed Engl ; 61(40): e202207581, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35930523

ABSTRACT

Bimetallic motifs mediate the selective activation and functionalization of CO2 in metalloenzymes and some recent synthetic systems. In this work, we build on the nascent concept of bimetallic frustrated Lewis pairs (FLPs) to investigate the activation and reduction of CO2 . Using the Fe0 fragment [(depe)2 Fe] (depe=1,2-bis(diethylphosphino)ethane) as base, we modify the nature of the partner Lewis acid to accomplish a divergent and highly chemoselective reactivity towards CO2 . [Au(PMe2 Ar)]+ irreversibly dissociates CO2 , Zn(C6 F5 )2 and B(C6 F5 )3 yield different CO2 adducts stabilized by push-pull interactions, while Al(C6 F5 )3 leads to a rare heterobimetallic C-O bond cleavage, and thus to contrasting reduced products after exposure to dihydrogen. Computational investigations provide a rationale for the divergent reactivity, while Energy Decomposition Analysis-Natural Orbital for Chemical Valence (EDA-NOCV) method substantiates the heterobimetallic bonding situation.

SELECTION OF CITATIONS
SEARCH DETAIL
...