Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Islets ; 16(1): 2339558, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38607959

ABSTRACT

BACKGROUND: Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic ß cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic ß cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS: Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS: Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS: Our findings do not substantiate the glucose-dependent release of acetate from pancreatic ß cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Mice , Acetates , Glucose , Pyruvic Acid
2.
Technol Cancer Res Treat ; 22: 15330338231219434, 2023.
Article in English | MEDLINE | ID: mdl-38083797

ABSTRACT

Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Antibodies, Monoclonal , Immune Checkpoint Inhibitors
3.
Ecol Evol ; 11(21): 14351-14365, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765111

ABSTRACT

Inland salt marshes are rare habitats in the Great Lakes region of North America, formed on salt deposits from the Silurian period. These patchy habitats are abiotically stressful for the freshwater invertebrates that live there, and provide an opportunity to study the relationship between stress and diversity. We used morphological and COI metabarcoding data to assess changes in diversity and composition across both space (a transect from the salt seep to an adjacent freshwater area) and time (three sampling seasons). Richness was significantly lower at the seep site with both datatypes, while metabarcoding data additionally showed reduced richness at the freshwater transect end, consistent with a pattern where intermediate levels of stress show higher diversity. We found complementary, rather than redundant, patterns of community composition using the two datatypes: not all taxa were equally sequenced with the metabarcoding protocol. We identified taxa that are abundant at the salt seep of the marsh, including biting midges (Culicoides) and ostracods (Heterocypris). We conclude that (as found in other studies) molecular and morphological work should be used in tandem to identify the biodiversity in this rare habitat. Additionally, salinity may be a driver of community membership in this system, though further ecological research is needed to rule out alternate hypotheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...