Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 8(10)2019 10 09.
Article in English | MEDLINE | ID: mdl-31600993

ABSTRACT

Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.


Subject(s)
Gene Regulatory Networks , Neoplasms/metabolism , Energy Metabolism , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Oxidative Phosphorylation , Tumor Microenvironment
2.
Viruses ; 10(7)2018 07 05.
Article in English | MEDLINE | ID: mdl-29976871

ABSTRACT

Platelets are considered as significant players in innate and adaptive immune responses. The adhesion molecules they express, including P-selectin, CD40L, and CD42b, facilitate interactions with many cellular effectors. Upon interacting with a pathogen, platelets rapidly express and enhance their adhesion molecules, and secrete cytokines and chemokines. A similar phenomenon occurs after exposure of platelets to thrombin, an agonist extensively used for in vitro activation of these cells. It was recently reported that the dengue virus not only interacts with platelets but possibly infects them, which triggers an increased expression of adhesion molecule P-selectin as well as secretion of IL-1ß. In the present study, surface molecules of platelets like CD40L, CD42b, CD62P, and MHC class I were evaluated at 4 h of interaction with dengue virus serotype 2 (DENV-2), finding that DENV-2 induced a sharp rise in the membrane expression of all these molecules. At 2 and 4 h of DENV-2 stimulation of platelets, a significantly greater secretion of soluble CD40L (sCD40L) was found (versus basal levels) as well as cytokines such as GM-CSF, IL-6, IL-8, IL-10, and TNF-α. Compared to basal, DENV-2 elicited more than two-fold increase in these cytokines. Compared to the thrombin-induced response, the level generated by DENV-2 was much higher for GM-CSF, IL-6, and TNF-α. All these events induced by DENV end up in conspicuous morphological changes observed in platelets by confocal microscopy and transmission electron microscopy, very different from those elicited by thrombin in a more physiological scenery.


Subject(s)
Blood Platelets/metabolism , CD40 Ligand/metabolism , Cell Membrane/metabolism , Dengue Virus/physiology , Dengue/blood , Dengue/virology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Blood Platelets/immunology , CD40 Ligand/blood , Case-Control Studies , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Cytosol/metabolism , Dengue/immunology , Histocompatibility Antigens Class I/immunology , Humans , P-Selectin/metabolism , Platelet Adhesiveness , Platelet Aggregation
SELECTION OF CITATIONS
SEARCH DETAIL
...