Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 9(8)2019 08 08.
Article in English | MEDLINE | ID: mdl-31398842

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) cells that are positive for human papillomavirus (HPV+) favor mitochondrial metabolism rather than glucose metabolism. However, the involvement of mitochondrial metabolism in HNSCC HPV+ cells is still unknown. The aim of this work was to evaluate the role of E6 oncoproteins from HPV16 and HPV18 in the mitochondrial metabolism in an HNSCC model. We found that E6 from both viral types abates the phosphorylation of protein kinase B-serine 473 (pAkt), which is associated with a shift in mitochondrial metabolism. E6 oncoproteins increased the levels of protein subunits of mitochondrial complexes (I to IV), as well as the ATP synthase and the protein levels of the voltage dependent anion channel (VDAC). Although E6 proteins increased the basal and leak respiration, the ATP-linked respiration was not affected, which resulted in mitochondrial decoupling. This increase in leak respiration was associated to the induction of oxidative stress (OS) in cells expressing E6, as it was observed by the fall in the glutathione/glutathione disulfide (GSH/GSSG) rate and the increase in reactive oxygen species (ROS), carbonylated proteins, and DNA damage. Taken together, our results suggest that E6 oncoproteins from HPV16 and HPV18 are inducers of mitochondrial metabolism.


Subject(s)
DNA-Binding Proteins/metabolism , Head and Neck Neoplasms/metabolism , Mitochondria/metabolism , Oncogene Proteins, Viral/metabolism , Papillomaviridae/chemistry , Repressor Proteins/metabolism , Head and Neck Neoplasms/virology , Humans , Mitochondria/virology , Papillomaviridae/metabolism , Tumor Cells, Cultured
2.
Mol Cell Probes ; 35: 34-43, 2017 10.
Article in English | MEDLINE | ID: mdl-28627450

ABSTRACT

INTRODUCTION: Treatment in metastatic colorectal cancer (mCRC) has expanded with monoclonal antibodies targeting epidermal growth factor receptor, but is restricted to patients with a wild-type (WT) KRAS mutational status. The most sensitive assays for KRAS mutation detection in formalin-fixed paraffin embedded (FFPE) tissues are based on real-time PCR. Among them, high resolution melting analysis (HRMA), is a simple, fast, highly sensitive, specific and cost-effective method, proposed as adjunct for KRAS mutation detection. However the method to categorize WT vs mutant sequences in HRMA is not clearly specified in available studies, besides the impact of FFPE artifacts on HRMA performance hasn't been addressed either. METHODS: Avowedly adequate samples from 104 consecutive mCRC patients were tested for KRAS mutations by Therascreen™ (FDA Validated test), HRMA, and HRMA with UDG pre-treatment to reverse FFPE fixation artifacts. Comparisons of KRAS status allocation among the three methods were done. Focusing on HRMA as screening test, ROC curve analyses were performed for HRMA and HMRA-UDG against Therascreen™, in order to evaluate their discriminative power and to determine the threshold of profile concordance between WT control and sample for KRAS status determination. RESULTS: Comparing HRMA and HRMA-UDG against Therascreen™ as surrogate gold standard, sensitivity was 1 for both HRMA and HRMA-UDG; and specificity and positive predictive values were respectively 0.838 and 0.939; and 0.777 and 0.913. As evaluated by the McNemar test, HRMA-UDG allocated samples to a WT/mutated genotype in a significatively different way from HRMA (p > 0.001). On the other hand HRMA-UDG did not differ from Therascreen™ (p = 0.125). ROC-curve analysis showed a significant discriminative power for both HRMA and HRMA-UDG against Therascreen™ (respectively, AUC of 0.978, p > 0.0001, CI 95% 0.957-0.999; and AUC of 0.98, p > 0.0001, CI 95% 0.000-1.0). For HRMA as a screening tool, the best threshold (degree of concordance between sample curves and WT control) was attained at 92.14% for HRMA (specificity of 0.887), and at 92.55% for HRMA-UDG (specificity of 0.952). CONCLUSIONS: HRMA is a highly sensitive method for KRAS mutation detection, with apparently adequate and statistically significant discriminative power. FFPE sample fixation artifacts have an impact on HRMA results, so for HRMA on FFPE samples pre-treatment with UDG should be strongly suggested. The choice of the threshold for melting curve concordance has also great impact on HRMA performance. A threshold of 93% or greater might be adequate if using HRMA as a screening tool. Further validation of this threshold is required.


Subject(s)
DNA Mutational Analysis/methods , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/genetics , Electrophoresis, Agar Gel , Female , Humans , Male , Polymerase Chain Reaction
3.
Glycobiology ; 23(1): 32-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22942212

ABSTRACT

An important step of innate immune response is the recruitment of polymorphonuclear leukocytes (PMN) to injured tissues through chemotactic molecules. Galectins, a family of endogenous lectins, participate in numerous functions such as lymphoid cell migration, homing, cell-cell and cell-matrix interactions. Particularly, galectin-3 (Gal-3) and -9 have been implicated in the modulation of acute and chronic inflammation by inducing the directional migration of monocytes/macrophages and eosinophils, whereas Gal-1 is considered to function as an anti-inflammatory molecule, capable of inhibiting the influx of PMN to the site of injury. In this study, we assessed the effect of Gal-1 on neutrophil recruitment, in the absence of additional inflammatory insults. Contrasting with its capacity to inhibit cell trafficking and modulate the release of mediators described in models of acute inflammation and autoimmunity, we evidenced that Gal-1 has the capacity to induce neutrophil migration both in vitro and in vivo. This effect is not mediated through a G-protein-coupled receptor but potentially through the sialoglycoprotein CD43, via carbohydrate binding and through the p38 mitogen-activated protein kinase pathway. These results suggest a novel biological function for CD43 on neutrophils and highlight that depending on the environment, Gal-1 can act either as chemoattractant or, as a molecule that negatively regulates migration under acute inflammatory conditions, underscoring the potential of Gal-1 as a target for innovative drug development.


Subject(s)
Chemotaxis, Leukocyte , Galectin 1/metabolism , Neutrophils/physiology , Galectin 1/pharmacology , Humans , Immunity, Innate , In Vitro Techniques , Leukosialin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...