Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Respir Crit Care Med ; 204(12): 1433-1451, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34550870

ABSTRACT

Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-ß3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-ß3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.


Subject(s)
Matrix Metalloproteinase 8/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Adult , Aged , Animals , Biomarkers/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Matrix Metalloproteinase 8/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/prevention & control , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley , Up-Regulation , Vascular Remodeling
2.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L628-L647, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28642262

ABSTRACT

Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinkovic A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiological feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Airway Remodeling/physiology , Apoptosis Regulatory Proteins/metabolism , Cyclooxygenase 2/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphoproteins/metabolism , Vascular Stiffness/physiology , Adult , Animals , Cell Movement , Cell Proliferation , Demography , Extracellular Matrix/metabolism , Female , Gene Knockdown Techniques , Humans , Hypertension, Pulmonary , Male , Middle Aged , Phenotype , Pulmonary Artery/cytology , Rats, Sprague-Dawley , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
3.
JCI Insight ; 1(8)2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27347562

ABSTRACT

Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2-derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH.

4.
Respir Med ; 107(2): 276-83, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23195332

ABSTRACT

RATIONALE: Bronchiolitis obliterans syndrome (BOS) is a late, non-infectious pulmonary complication following hematopoietic stem cell transplantation (HSCT). There is minimal data published on quantitative radiologic characterization of airway remodeling in these subjects. OBJECTIVES: To examine quantitative measurements of airway morphology and their correlation with lung function in a cohort of patients who underwent HSCT and developed BOS. METHODS: All adult patients who underwent allogeneic HSCT at the Dana-Farber Cancer Institute/Brigham and Women's Hospital (n = 1854) between January 1st 2000 and June 30th 2010 were screened for the development of BOS. Clinically acquired high resolution CT (HRCT) scans of the chest were collected. For each subjects discrete measures of airway wall area were performed and the square root of wall area of a 10-mm luminal perimeter (Pi10) was calculated. MEASUREMENTS AND MAIN RESULTS: We identified 88 cases of BOS, and 37 of these patients had available HRCT. On CT scans obtained after BOS diagnosis, the Pi10 decreased (consistent with airway dilation) as compared with pre-BOS values (p < 0.001). After HSCT the Pi10 correlated with FEV(1)% predicted (r = 0.636, p < 0.0001), and RV/TLC% predicted (r = -0.736, p < 0.0001), even after adjusting for age, sex and total lung capacity (p < 0.0001 for both). CONCLUSIONS: On HRCT scan BOS is characterized by central airway dilation, the degree of which is correlated to decrements in lung function. This is opposite of what has been previously demonstrated in COPD and asthma that quantitative measure of proximal airway wall thickening directly correlate with pulmonary function. Our data suggests that the pathologic process affecting the central airways is different from the pathology observed in the distal airways. Further work is needed to determine if such change can be used as a sensitive and specific tool for the future diagnosis and staging of BOS.


Subject(s)
Bronchi/pathology , Bronchiolitis Obliterans/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Adult , Aged , Airway Remodeling/physiology , Bronchiolitis Obliterans/diagnostic imaging , Bronchiolitis Obliterans/pathology , Bronchiolitis Obliterans/physiopathology , Bronchography/methods , Case-Control Studies , Dilatation, Pathologic/etiology , Dilatation, Pathologic/physiopathology , Female , Forced Expiratory Volume/physiology , Humans , Male , Middle Aged , Tomography, X-Ray Computed/methods , Vital Capacity/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...