Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29900, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699711

ABSTRACT

Ecuador is one of the world's leading producers of cacao beans, and Nacional x Trinitario cacao represents one of the most distinctive varieties due to its flavor and aroma characteristics. This study aimed to evaluate the effect of the starter culture isolated from microbial diversity during the spontaneous fermentation of Nacional x Trinitario cacao. A total of 249 microbial isolates were obtained from spontaneous culture, with Lactiplantibacillus (45 %), Saccharomyces (17 %), and Acetobacter (2 %) being the most relevant genera for fermentation. Tolerance tests were conducted to select microorganisms for the starter culture. Lactiplantibacillus plantarum exhibited the highest tolerance at pH 5 and 6 % ethanol and tolerated concentrations up to 15 % for glucose and fructose. Acetobacter pasteurianus grew at pH 2 and 6 % ethanol, tolerating high sugar concentrations of up to 15 % for glucose and 30 % for fructose, with growth observed in concentrations up to 5 % for lactic and acetic acid. Subsequently, a laboratory-scale fermentation was conducted with the formulated starter culture (SC) comprising S. cerevisiae, L. plantarum, and A. pasteurianus, which exhibited high tolerance to various stress conditions. The fermentation increased alcoholic compounds, including citrusy, fruity aromas, and floral notes such as 2-heptanol and phenylethyl alcohol, respectively 1.6-fold and 5.6-fold compared to the control. Moreover, the abundance of ketones 2-heptanone and 2-nonanone increased significantly, providing sweet green herbs and fruity woody aromas. Cacao fermented with this SC significantly enhanced the favorable aroma-producing metabolites characteristic of Fine-aroma cacao. These findings underscore the potential of tailored fermentation strategies to improve cacao product quality and sensory attributes, emphasizing the importance of ongoing research in optimizing fermentation processes for the cacao industry.

2.
Environ Geochem Health ; 45(7): 4929-4949, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36997826

ABSTRACT

Elevated heavy metal(loid)s concentrations in water lower its quality posing a threat to consumers. This study aims to assess the human health risk caused by heavy metal(loid)s in tap water in Santa Rosa city, Ecuador, and the ecological risk of stream water and sediments in the Santa Rosa River. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were evaluated in tap waters, stream waters, and sediment samples during the rainy and dry seasons. The Metal Index (MI), Geo-accumulation Index (Igeo), Potential Ecological Risk Index (PERI), and the levels of carcinogenic (CR) and non-carcinogenic risk (HQ) were determined. The results revealed severe pollution levels, mainly in Los Gringos and El Panteon streams, both tributaries of the Santa Rosa River, the primary water source for Santa Rosa inhabitants. More than 20% of the surface water samples showed severe contamination (MI > 6), and 90% of the tap water samples presented a MI value between 1 and 4, which indicates slight to moderate pollution. Drinking water displayed high levels of As, with 83% of the tap water samples collected from households in the dry season above the recommended concentration set by the World Health Organization and Ecuadorian legislation. The Igeo-Cd in the sediment samples was significantly high (Igeo > 3), and the PERI showed very high ecological risk (PERI > 600), with Cd as the main pollutant. HQ and CR were above the safe exposure threshold, suggesting that residents are at risk from tap water consumption, with As being the primary concern.


Subject(s)
Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Humans , Environmental Monitoring/methods , Ecuador , Water Pollutants, Chemical/analysis , Cadmium , Geologic Sediments , Risk Assessment , Water Quality , Metals, Heavy/analysis , Rivers , China
3.
Microorganisms ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35893576

ABSTRACT

Biosurfactants (BS) are amphiphilic molecules that align at the interface reducing the surface tension. BS production is developed as an alternative to synthetic surfactants because they are biodegradable, with low toxicity and high specificity. BS are versatile, and this research proposes using a biosurfactant crude extract (BCE) as part of cleaning products. This paper reported the BCE production from Bacillus subtilis DS03 using a medium with molasses. The BCE product was characterized by different physical and chemical tests under a wide pH range, high temperatures, and emulsifying properties showing successful results. The water surface tension of 72 mN/m was reduced to 34 mN/m with BCE, achieving a critical micelle concentration at 24.66 ppm. BCE was also applied to polystyrene surface as pre-treatment to avoid microbial biofilm development, showing inhibition in more than 90% of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes above 2000 ppm BCE. The test continued using BCE as post-treatment to remove biofilms, reporting a significant reduction of 50.10% Escherichia coli, 55.77% Staphylococcus aureus, and 59.44% Listeria monocytogenes in a concentration higher than 250 ppm BCE. Finally, a comparison experiment was performed between sodium lauryl ether sulfate (SLES) and BCE (included in commercial formulation), reporting an efficient reduction with the mixtures. The results suggested that BCE is a promising ingredient for cleaning formulations with applications in industrial food applications.

4.
Colloids Surf B Biointerfaces ; 149: 38-47, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27718395

ABSTRACT

Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C3(LA)2) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C3(LA)2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus licheniformis/chemistry , Cell Membrane/drug effects , Lipoproteins/pharmacology , Peptides, Cyclic/pharmacology , Quaternary Ammonium Compounds/pharmacology , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus licheniformis/metabolism , Cell Membrane/ultrastructure , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Flow Cytometry , Lipoproteins/chemistry , Lipoproteins/isolation & purification , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Potassium/metabolism , Static Electricity , Surface-Active Agents/chemistry , Surface-Active Agents/isolation & purification
5.
Environ Sci Pollut Res Int ; 23(7): 6690-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26645234

ABSTRACT

This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50% (IC50%), and an inhibitory concentration at 90% (IC90%) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50%, and IC90% values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds.


Subject(s)
Bacillus subtilis/metabolism , Fungicides, Industrial/pharmacology , Lipopeptides/pharmacology , Rhizoctonia/drug effects , Soil Microbiology , Fungicides, Industrial/isolation & purification , Lipopeptides/isolation & purification , Microbial Sensitivity Tests , Mycelium/drug effects , Rhizoctonia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...